import os from dotenv import load_dotenv from rag_app.database.db_handler import DataBaseHandler from langchain_huggingface import HuggingFaceEndpoint load_dotenv() SQLITE_FILE_NAME = os.getenv('SOURCES_CACHE') PERSIST_DIRECTORY = os.getenv('VECTOR_DATABASE_LOCATION') EMBEDDING_MODEL = os.getenv("EMBEDDING_MODEL") SEVEN_B_LLM_MODEL = os.getenv("SEVEN_B_LLM_MODEL") BERT_MODEL = os.getenv("BERT_MODEL") db = DataBaseHandler() db.create_all_tables() # This model is used for task that a larger model may not need to do # as of currently we have been getting MODEL OVERLOADED errors # with huggingface SEVEN_B_LLM_MODEL = HuggingFaceEndpoint( repo_id=SEVEN_B_LLM_MODEL, temperature=0.1, # Controls randomness in response generation (lower value means less random) max_new_tokens=1024, # Maximum number of new tokens to generate in responses repetition_penalty=1.2, # Penalty for repeating the same words (higher value increases penalty) return_full_text=False # If False, only the newly generated text is returned; if True, the input is included as well )