# Import Gradio for UI, along with other necessary libraries import gradio as gr from rag_app.loading_data.load_S3_vector_stores import get_chroma_vs from rag_app.agents.react_agent import agent_executor from config import db get_chroma_vs() if __name__ == "__main__": # Function to add a new input to the chat history def add_text(history, text): # Append the new text to the history with a placeholder for the response history = history + [(text, None)] return history, "" # Function representing the bot's response mechanism def bot(history): # Obtain the response from the 'infer' function using the latest input response = infer(history[-1][0], history) print(response) history[-1][1] = response['output'] return history # Function to infer the response using the RAG model def infer(question, history): # Use the question and history to query the RAG model #result = qa({"query": question, "history": history, "question": question}) try: result = agent_executor.invoke( { "input": question, "chat_history": history } ) return result except Exception: raise gr.Warning("Model is Overloaded, please try again in a few minutes!") def vote(data: gr.LikeData): if data.liked: print("You upvoted this response: ") else: print("You downvoted this response: ") def get_examples(input_text: str): tmp_history = [(input_text, None)] response = infer(input_text, tmp_history) return response['output'] # CSS styling for the Gradio interface css = """ #col-container {max-width: 1200px; margin-left: auto; margin-right: auto;} """ # HTML content for the Gradio interface title title = """

Hello, I BotTina 2.0, your intelligent AI assistant. I can help you explore Wuerttembergische Versicherungs products.

""" head_style = """ """ # Building the Gradio interface with gr.Blocks(theme=gr.themes.Soft(), title="InsurePal AI 🤵🏻‍♂️", head=head_style) as demo: with gr.Column(elem_id="col-container"): gr.HTML() # Add the HTML title to the interface chatbot = gr.Chatbot([], elem_id="chatbot", label="InsurePal AI", bubble_full_width=False, avatar_images=(None, "https://dacodi-production.s3.amazonaws.com/store/87bc00b6727589462954f2e3ff6f531c.png"), height=680,) # Initialize the chatbot component chatbot.like(vote, None, None) # Create a row for the question input with gr.Row(): question = gr.Textbox(label="Question", show_label=False, placeholder="Type your question and hit Enter ", scale=4) send_btn = gr.Button(value="Send", variant="primary", scale=0) with gr.Accordion(label="Beispiele", open=False): #examples examples = gr.Examples([ "Welche Versicherungen brauche ich als Student?", "Wie melde ich einen Schaden?", "Wie kann ich mich als Selbstständiger finanziell absichern?", "Welche Versicherungen sollte ich für meine Vorsorge abschliessen?" ], inputs=[question], label="") #, cache_examples="lazy", fn=get_examples, outputs=[chatbot] with gr.Row(): clear = gr.Button("Clear") # Add a button to clear the chat # Define the action when the question is submitted question.submit(add_text, [chatbot, question], [chatbot, question], queue=False).then( bot, chatbot, chatbot) send_btn.click(add_text, [chatbot, question], [chatbot, question], queue=False).then( bot, chatbot, chatbot) # Define the action for the clear button clear.click(lambda: None, None, chatbot, queue=False) # Launch the Gradio demo interface demo.queue().launch(share=False, debug=True)