Spaces:
Sleeping
Sleeping
added new chain
Browse files- .gitignore +3 -0
- app_gui.py +89 -74
- rag_app/chains/__init__.py +1 -0
- rag_app/chains/user_response_sentiment_chain.py +42 -0
.gitignore
CHANGED
@@ -164,3 +164,6 @@ cython_debug/
|
|
164 |
*.sqlite3
|
165 |
*.bin
|
166 |
*.pickle
|
|
|
|
|
|
|
|
164 |
*.sqlite3
|
165 |
*.bin
|
166 |
*.pickle
|
167 |
+
|
168 |
+
|
169 |
+
*.db
|
app_gui.py
CHANGED
@@ -1,92 +1,107 @@
|
|
1 |
# Import Gradio for UI, along with other necessary libraries
|
2 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
from rag_app.agents.react_agent import agent_executor
|
4 |
-
from config import db
|
5 |
# need to import the qa!
|
6 |
-
db.create_new_session()
|
7 |
|
8 |
|
9 |
-
def add_text(history, text):
|
10 |
-
"""Function to add a new input to the chat history
|
11 |
-
|
12 |
-
Return: return_description
|
13 |
-
"""
|
14 |
-
|
15 |
-
# Append the new text to the history with a placeholder for the response
|
16 |
-
history = history + [(text, None)]
|
17 |
-
return history, ""
|
18 |
-
|
19 |
|
20 |
-
def bot(history):
|
21 |
-
"""Function representing the bot's response mechanism
|
22 |
-
|
23 |
-
"""
|
24 |
-
|
25 |
-
# Obtain the response from the 'infer' function using the latest input
|
26 |
-
response = infer(history[-1][0], history)
|
27 |
-
#sources = [doc.metadata.get("source") for doc in response['source_documents']]
|
28 |
-
#src_list = '\n'.join(sources)
|
29 |
-
#print_this = response['result'] + "\n\n\n Sources: \n\n\n" + src_list
|
30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
-
|
33 |
-
# Update the history with the bot's response
|
34 |
-
history[-1][1] = response['output']
|
35 |
-
return history
|
36 |
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
try:
|
45 |
-
result = agent_executor.invoke(
|
46 |
-
{
|
47 |
-
"input": question,
|
48 |
-
"chat_history": history
|
49 |
-
}
|
50 |
-
)
|
51 |
-
return result
|
52 |
-
except Exception:
|
53 |
-
raise gr.Error("Model is Overloaded, Please retry later!")
|
54 |
-
|
55 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
-
# CSS styling for the Gradio interface
|
58 |
-
css = """
|
59 |
-
#col-container {max-width: 700px; margin-left: auto; margin-right: auto;}
|
60 |
-
"""
|
61 |
|
62 |
-
# HTML content for the Gradio interface title
|
63 |
-
title = """
|
64 |
-
<div style="text-align:left;">
|
65 |
-
|
66 |
-
</div>
|
67 |
-
"""
|
68 |
|
69 |
-
# Building the Gradio interface
|
70 |
-
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
|
|
79 |
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
|
91 |
-
# Launch the Gradio demo interface
|
92 |
-
demo.launch(share=False, debug=True)
|
|
|
1 |
# Import Gradio for UI, along with other necessary libraries
|
2 |
import gradio as gr
|
3 |
+
from fastapi import FastAPI
|
4 |
+
from rag_app.agents.react_agent import agent_executor, llm
|
5 |
+
from rag_app.chains import user_response_sentiment_prompt
|
6 |
+
from typing import Dict
|
7 |
+
import re
|
8 |
+
from rag_app.utils.utils import extract_responses
|
9 |
+
from rag_app.loading_data.load_S3_vector_stores import get_chroma_vs
|
10 |
from rag_app.agents.react_agent import agent_executor
|
|
|
11 |
# need to import the qa!
|
|
|
12 |
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
+
app = FastAPI()
|
17 |
+
get_chroma_vs()
|
18 |
+
user_sentiment_chain = user_response_sentiment_prompt | llm
|
19 |
+
# data = user_sentiment_chain.invoke({"user_reponse":"thanks for the help"})
|
20 |
+
data = user_sentiment_chain.invoke({"user_reponse":"OMG I AM SO LOST!!! HELP!!!"})
|
21 |
+
responses = extract_responses(data)
|
22 |
+
if responses['AI'] == "1":
|
23 |
+
print("GG")
|
24 |
|
25 |
+
if __name__ == "__main__":
|
|
|
|
|
|
|
26 |
|
27 |
+
# Function to add a new input to the chat history
|
28 |
+
def add_text(history, text):
|
29 |
+
# Append the new text to the history with a placeholder for the response
|
30 |
+
history = history + [(text, None)]
|
31 |
+
return history, ""
|
32 |
|
33 |
+
# Function representing the bot's response mechanism
|
34 |
+
def bot(history):
|
35 |
+
# Obtain the response from the 'infer' function using the latest input
|
36 |
+
response = infer(history[-1][0], history)
|
37 |
+
history[-1][1] = response['output']
|
38 |
+
return history
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
+
# Function to infer the response using the RAG model
|
41 |
+
def infer(question, history):
|
42 |
+
# Use the question and history to query the RAG model
|
43 |
+
#result = qa({"query": question, "history": history, "question": question})
|
44 |
+
# try:
|
45 |
+
# data = user_sentiment_chain.invoke({"user_reponse":question})
|
46 |
+
# responses = extract_responses(data)
|
47 |
+
# if responses['AI'] == "1":
|
48 |
+
# pass
|
49 |
+
# # Do important stuff here plox
|
50 |
+
# # store into database
|
51 |
+
# except Exception as e:
|
52 |
+
# raise e
|
53 |
+
try:
|
54 |
+
result = agent_executor.invoke(
|
55 |
+
{
|
56 |
+
"input": question,
|
57 |
+
"chat_history": history
|
58 |
+
}
|
59 |
+
)
|
60 |
+
return result
|
61 |
+
except Exception as e:
|
62 |
+
# raise gr.Error("Model is Overloaded, Please retry later!")
|
63 |
+
raise e
|
64 |
+
|
65 |
+
def vote(data: gr.LikeData):
|
66 |
+
if data.liked:
|
67 |
+
print("You upvoted this response: ")
|
68 |
+
else:
|
69 |
+
print("You downvoted this response: ")
|
70 |
|
71 |
+
# CSS styling for the Gradio interface
|
72 |
+
css = """
|
73 |
+
#col-container {max-width: 700px; margin-left: auto; margin-right: auto;}
|
74 |
+
"""
|
75 |
|
76 |
+
# HTML content for the Gradio interface title
|
77 |
+
title = """
|
78 |
+
<div style="text-align:left;">
|
79 |
+
<p>Hello, I BotTina 2.0, your intelligent AI assistant. I can help you explore Wuerttembergische Versicherungs products.<br />
|
80 |
+
</div>
|
81 |
+
"""
|
82 |
|
83 |
+
# Building the Gradio interface
|
84 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
85 |
+
with gr.Column(elem_id="col-container"):
|
86 |
+
gr.HTML(title) # Add the HTML title to the interface
|
87 |
+
chatbot = gr.Chatbot([], elem_id="chatbot",
|
88 |
+
label="BotTina 2.0",
|
89 |
+
bubble_full_width=False,
|
90 |
+
avatar_images=(None, "https://dacodi-production.s3.amazonaws.com/store/87bc00b6727589462954f2e3ff6f531c.png"),
|
91 |
+
height=680,) # Initialize the chatbot component
|
92 |
+
chatbot.like(vote, None, None)
|
93 |
+
clear = gr.Button("Clear") # Add a button to clear the chat
|
94 |
|
95 |
+
# Create a row for the question input
|
96 |
+
with gr.Row():
|
97 |
+
question = gr.Textbox(label="Question", placeholder="Type your question and hit Enter ")
|
98 |
|
99 |
+
# Define the action when the question is submitted
|
100 |
+
question.submit(add_text, [chatbot, question], [chatbot, question], queue=False).then(
|
101 |
+
bot, chatbot, chatbot
|
102 |
+
)
|
103 |
+
# Define the action for the clear button
|
104 |
+
clear.click(lambda: None, None, chatbot, queue=False)
|
105 |
|
106 |
+
# Launch the Gradio demo interface
|
107 |
+
demo.queue().launch(share=False, debug=True)
|
rag_app/chains/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
# from rag_app.chains.s
|
rag_app/chains/user_response_sentiment_chain.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain_core.prompts import PromptTemplate
|
2 |
+
|
3 |
+
|
4 |
+
user_response_sentiment_template = """
|
5 |
+
You will be given a user response to an agent.
|
6 |
+
=================
|
7 |
+
{user_reponse}
|
8 |
+
====================
|
9 |
+
You must determine if the user has has their questions answered.
|
10 |
+
If the user seems satisfied respond saying "1" or "0" ONLY.
|
11 |
+
|
12 |
+
Examples:
|
13 |
+
================
|
14 |
+
|
15 |
+
Example 1
|
16 |
+
USER: Great Work!
|
17 |
+
YOUR RESPONSE: 1
|
18 |
+
=================
|
19 |
+
|
20 |
+
USER: I still need help!
|
21 |
+
YOUR RESPONSE: 0
|
22 |
+
Example 2
|
23 |
+
================================
|
24 |
+
|
25 |
+
USER: I don't understand what you mean
|
26 |
+
YOUR RESPONSE: 0
|
27 |
+
Example 3
|
28 |
+
================================
|
29 |
+
|
30 |
+
USER: That makes sense!
|
31 |
+
YOUR RESPONSE: 1
|
32 |
+
Example 4
|
33 |
+
================================
|
34 |
+
|
35 |
+
|
36 |
+
|
37 |
+
"""
|
38 |
+
|
39 |
+
user_response_sentiment_prompt = PromptTemplate.from_template(user_response_sentiment_template)
|
40 |
+
|
41 |
+
|
42 |
+
# llm_chain = prompt | llms
|