Spaces:
Sleeping
Sleeping
# Import Gradio for UI, along with other necessary libraries | |
import gradio as gr | |
from rag_app.loading_data.load_S3_vector_stores import get_chroma_vs | |
from rag_app.loading_data.load_S3_vector_stores import get_chroma_vs | |
from rag_app.agents.react_agent import agent_executor | |
from config import db | |
get_chroma_vs() | |
if __name__ == "__main__": | |
# Function to add a new input to the chat history | |
def add_text(history, text): | |
# Append the new text to the history with a placeholder for the response | |
history = history + [(text, None)] | |
return history, "" | |
# Function representing the bot's response mechanism | |
def bot(history): | |
# Obtain the response from the 'infer' function using the latest input | |
response = infer(history[-1][0], history) | |
print(response) | |
history[-1][1] = response['output'] | |
return history | |
# Function to infer the response using the RAG model | |
def infer(question, history): | |
# Use the question and history to query the RAG model | |
#result = qa({"query": question, "history": history, "question": question}) | |
try: | |
result = agent_executor.invoke( | |
{ | |
"input": question, | |
"chat_history": history | |
} | |
) | |
return result | |
except Exception: | |
raise gr.Warning("Model is Overloaded, please try again in a few minutes!") | |
def vote(data: gr.LikeData): | |
if data.liked: | |
print("You upvoted this response: ") | |
else: | |
print("You downvoted this response: ") | |
def get_examples(input_text: str): | |
tmp_history = [(input_text, None)] | |
response = infer(input_text, tmp_history) | |
return response['output'] | |
# CSS styling for the Gradio interface | |
css = """ | |
#col-container {max-width: 1200px; margin-left: auto; margin-right: auto;} | |
""" | |
# HTML content for the Gradio interface title | |
title = """ | |
<div style="text-align:left;"> | |
<p>Hello, I BotTina 2.0, your intelligent AI assistant. I can help you explore Wuerttembergische Versicherungs products.<br /> | |
</div> | |
""" | |
head_style = """ | |
<style> | |
@media (min-width: 1536px) | |
{ | |
.gradio-container { | |
min-width: var(--size-full) !important; | |
} | |
} | |
</style> | |
""" | |
# Building the Gradio interface | |
with gr.Blocks(theme=gr.themes.Soft(), title="InsurePal AI 🤵🏻♂️", head=head_style) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.HTML() # Add the HTML title to the interface | |
chatbot = gr.Chatbot([], elem_id="chatbot", | |
label="InsurePal AI", | |
bubble_full_width=False, | |
avatar_images=(None, "https://dacodi-production.s3.amazonaws.com/store/87bc00b6727589462954f2e3ff6f531c.png"), | |
height=680,) # Initialize the chatbot component | |
chatbot.like(vote, None, None) | |
# Create a row for the question input | |
with gr.Row(): | |
question = gr.Textbox(label="Question", show_label=False, placeholder="Type your question and hit Enter ", scale=4) | |
send_btn = gr.Button(value="Send", variant="primary", scale=0) | |
with gr.Accordion(label="Beispiele", open=False): | |
#examples | |
examples = gr.Examples([ | |
"Welche Versicherungen brauche ich als Student?", | |
"Wie melde ich einen Schaden?", | |
"Wie kann ich mich als Selbstständiger finanziell absichern?", | |
"Welche Versicherungen sollte ich für meine Vorsorge abschliessen?" | |
], inputs=[question], label="") #, cache_examples="lazy", fn=get_examples, outputs=[chatbot] | |
with gr.Row(): | |
clear = gr.Button("Clear") # Add a button to clear the chat | |
# Define the action when the question is submitted | |
question.submit(add_text, [chatbot, question], [chatbot, question], queue=False).then( | |
bot, chatbot, chatbot) | |
send_btn.click(add_text, [chatbot, question], [chatbot, question], queue=False).then( | |
bot, chatbot, chatbot) | |
# Define the action for the clear button | |
clear.click(lambda: None, None, chatbot, queue=False) | |
# Launch the Gradio demo interface | |
demo.queue().launch(share=False, debug=True) |