Spaces:
Sleeping
Sleeping
from rag_app.load_data_from_urls import load_docs_from_urls | |
from rag_app.create_embedding import create_embeddings | |
from rag_app.generate_summary import generate_description, generate_keywords | |
from rag_app.handle_vector_store import build_vector_store | |
# 1. load the urls | |
# 2. build the vectorstore -> the function will create the chunking and embeddings | |
# 3. initialize the db retriever | |
# 4. | |
docs = load_docs_from_urls(["https://www.wuerttembergische.de/"],6) | |
# for doc in docs: | |
# keywords=generate_keywords(doc) | |
# description=generate_description(doc) | |
# doc.metadata['keywords']=keywords | |
# doc.metadata['description']=description | |
# print(doc.metadata) | |
build_vector_store(docs, './vectorstore/faiss-insurance-agent-1500','sentence-transformers/multi-qa-mpnet-base-dot-v1',True,1500,150) | |
#print(create_embeddings(docs)) | |