Spaces:
Sleeping
Sleeping
from rag_app.loading_data.load_urls_recurisvely import load_docs_from_urls | |
from rag_app.knowledge_base.create_embedding import create_embeddings | |
from rag_app.utils.generate_summary import generate_description, generate_keywords | |
from rag_app.knowledge_base.build_vector_store import build_vector_store | |
from rag_app.loading_data.scrap_website import scrap_website | |
from rag_app.loading_data.load_S3_vector_stores import get_chroma_vs, get_faiss_vs | |
# 1. load the urls | |
# 2. build the vectorstore -> the function will create the chunking and embeddings | |
# 3. initialize the db retriever | |
# 4. | |
# docs = load_docs_from_urls(["https://www.wuerttembergische.de/"],6) | |
# # for doc in docs: | |
# # keywords=generate_keywords(doc) | |
# # description=generate_description(doc) | |
# # doc.metadata['keywords']=keywords | |
# # doc.metadata['description']=description | |
# # print(doc.metadata) | |
# build_vector_store(docs, './vectorstore/faiss-insurance-agent-1500','sentence-transformers/multi-qa-mpnet-base-dot-v1',True,1500,150) | |
# print(create_embeddings(docs)) | |
#print(scrap_website(target_url='https://www.wuerttembergische.de/',depth=1)) | |
get_faiss_vs() | |
#get_chroma_vs() |