Spaces:
Sleeping
Sleeping
# embeddings functions | |
#from langchain_community.vectorstores import FAISS | |
#from langchain_community.document_loaders import ReadTheDocsLoader | |
#from langchain_community.vectorstores.utils import filter_complex_metadata | |
from langchain_text_splitters import RecursiveCharacterTextSplitter | |
# from langchain_huggingface import HuggingFaceEmbeddings | |
from langchain_community.embeddings.sentence_transformer import ( | |
SentenceTransformerEmbeddings, | |
) | |
import time | |
from langchain_core.documents import Document | |
def create_embeddings( | |
docs: list[Document], | |
chunk_size:int = 500, | |
chunk_overlap:int = 50, | |
embedding_model: str = "sentence-transformers/multi-qa-mpnet-base-dot-v1", | |
): | |
"""given a sequence of `Document` objects this fucntion will | |
generate embeddings for it. | |
## argument | |
:params docs (list[Document]) -> list of `list[Document]` | |
:params chunk_size (int) -> chunk size in which documents are chunks, defaults to 500 | |
:params chunk_overlap (int) -> the amount of token that will be overlapped between chunks, defaults to 50 | |
:params embedding_model (str) -> the huggingspace model that will embed the documents | |
## Return | |
Tuple of embedding and chunks | |
""" | |
text_splitter = RecursiveCharacterTextSplitter( | |
separators=["\n\n", "\n", "(?<=\. )", " ", ""], | |
chunk_size = chunk_size, | |
chunk_overlap = chunk_overlap, | |
length_function = len, | |
) | |
# Stage one: read all the docs, split them into chunks. | |
st = time.time() | |
print('Loading documents and creating chunks ...') | |
# Split each document into chunks using the configured text splitter | |
chunks = text_splitter.create_documents([doc.page_content for doc in docs], metadatas=[doc.metadata for doc in docs]) | |
et = time.time() - st | |
print(f'Time taken to chunk {len(docs)} documents: {et} seconds.') | |
#Stage two: embed the docs. | |
#embeddings = HuggingFaceEmbeddings(model_name=embedding_model) | |
embeddings = SentenceTransformerEmbeddings(model_name=embedding_model) | |
print(f"created a total of {len(chunks)} chunks") | |
return embeddings,chunks |