import os import gradio as gr from llama_cpp import Llama from huggingface_hub import hf_hub_download import boto3 from botocore import UNSIGNED from botocore.client import Config from langchain.llms import CTransformers from ctransformers import AutoModelForCausalLM from langchain.document_loaders import WebBaseLoader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.llms import HuggingFaceHub #llm = AutoModelForCausalLM.from_pretrained("TheBloke/OpenBuddy-Llama2-13B-v11.1-GGUF", model_file="openbuddy-llama2-13b-v11.1.q4_K_M.gguf", model_type="llama", gpu_layers=50) config = {'max_new_tokens': 256, 'repetition_penalty': 1.1} model_name = "TheBloke/OpenBuddy-Llama2-13B-v11.1-GGUF" model_basename = "openbuddy-llama2-13b-v11.1.Q2_K.gguf" model_path = hf_hub_download(repo_id=model_name, filename=model_basename, revision="main") llama = Llama(model_path) #llm = CTransformers(model='TheBloke/OpenBuddy-Llama2-13B-v11.1-GGUF', model_file='openbuddy-llama2-13b-v11.1.q4_K_M.gguf', config=config) #model_id = HuggingFaceHub(repo_id="TheBloke/OpenBuddy-Llama2-13B-v11.1-GGUF", model_kwargs={"temperature":0.1, "max_new_tokens":300}) from langchain.embeddings import HuggingFaceHubEmbeddings from langchain.vectorstores import Chroma from langchain.chains import RetrievalQA from langchain.prompts import ChatPromptTemplate web_links = ["https://www.databricks.com/","https://help.databricks.com","https://docs.databricks.com","https://kb.databricks.com/","http://docs.databricks.com/getting-started/index.html","http://docs.databricks.com/introduction/index.html","http://docs.databricks.com/getting-started/tutorials/index.html","http://docs.databricks.com/machine-learning/index.html","http://docs.databricks.com/sql/index.html"] loader = WebBaseLoader(web_links) documents = loader.load() #s3 = boto3.client('s3', config=Config(signature_version=UNSIGNED)) #s3.download_file('rad-rag-demos', 'vectorstores/chroma.sqlite3', './chroma_db/chroma.sqlite3') #db = Chroma(persist_directory="./chroma_db", embedding_function=embeddings) #db.get() text_splitter = RecursiveCharacterTextSplitter(chunk_size=850, chunk_overlap=80) texts = text_splitter.split_documents(documents) embeddings = HuggingFaceHubEmbeddings() db = Chroma.from_documents(documents=texts, embedding=embeddings, persist_directory="chroma_db") retriever = db.as_retriever() global qa qa = RetrievalQA.from_chain_type(llm=llama, chain_type="stuff", retriever=retriever, return_source_documents=True) def add_text(history, text): history = history + [(text, None)] return history, "" def bot(history): response = infer(history[-1][0]) history[-1][1] = response['result'] return history def infer(question): query = question result = qa({"query": query}) return result css=""" #col-container {max-width: 700px; margin-left: auto; margin-right: auto;} """ title = """

Chat with PDF

Upload a .PDF from your computer, click the "Load PDF to LangChain" button,
when everything is ready, you can start asking questions about the pdf ;)

""" def predict(message, history): messages = [] for human_content, system_content in history: message_human = { "role": "user", "content": human_content + "\n", } message_system = { "role": "system", "content": system_content + "\n", } messages.append(message_human) messages.append(message_system) message_human = { "role": "user", "content": message + "\n", } messages.append(message_human) streamer = llama.create_chat_completion(messages, stream=True) partial_message = "" for msg in streamer: message = msg['choices'][0]['delta'] if 'content' in message: partial_message += message['content'] yield partial_message gr.ChatInterface(predict, examples=["was ist das hier?", "wo leben pinguine?", "was ist die Währung in China?", "Welche Bedeutung haben die folgenden emoji 👨👩🔥❄️?", ], cache_examples=False, ).launch(enable_queue=True)