Spaces:
Build error
Build error
import gradio as gr | |
import random | |
import time | |
import boto3 | |
from botocore import UNSIGNED | |
from botocore.client import Config | |
import zipfile | |
from langchain.llms import HuggingFaceHub | |
model_id = HuggingFaceHub(repo_id="tiiuae/falcon-7b-instruct", model_kwargs={"temperature":0.1, "max_new_tokens":1024}) | |
from langchain.embeddings import HuggingFaceHubEmbeddings | |
embeddings = HuggingFaceHubEmbeddings() | |
from langchain.vectorstores import FAISS | |
from langchain.chains import RetrievalQA | |
s3 = boto3.client('s3', config=Config(signature_version=UNSIGNED)) | |
s3.download_file('rad-rag-demos', 'vectorstores/faiss_db_ray.zip', './chroma_db/faiss_db_ray.zip') | |
with zipfile.ZipFile('./chroma_db/faiss_db_ray.zip', 'r') as zip_ref: | |
zip_ref.extractall('./chroma_db/') | |
FAISS_INDEX_PATH='./chroma_db/faiss_db_ray' | |
#embeddings = HuggingFaceHubEmbeddings("multi-qa-mpnet-base-dot-v1") | |
embeddings = HuggingFaceHubEmbeddings() | |
db = FAISS.load_local(FAISS_INDEX_PATH, embeddings) | |
retriever = db.as_retriever(search_type = "mmr") | |
global qa | |
qa = RetrievalQA.from_chain_type(llm=model_id, chain_type="stuff", retriever=retriever) | |
def add_text(history, text): | |
history = history + [(text, None)] | |
return history, "" | |
def bot(history): | |
response = infer(history[-1][0]) | |
history[-1][1] = response['result'] | |
return history | |
def infer(question): | |
query = question | |
result = qa({"query": query}) | |
return result | |
css=""" | |
#col-container {max-width: 700px; margin-left: auto; margin-right: auto;} | |
""" | |
title = """ | |
<div style="text-align: center;max-width: 700px;"> | |
<h1>Chat with the RAY Docs</h1> | |
<p style="text-align: center;">The AI bot is here to help you with the RAY Documentation, <br /> | |
start asking questions about the open-source software </p> | |
</div> | |
""" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.HTML(title) | |
chatbot = gr.Chatbot([], elem_id="chatbot") | |
with gr.Row(): | |
question = gr.Textbox(label="Question", placeholder="Type your question and hit Enter ") | |
question.submit(add_text, [chatbot, question], [chatbot, question]).then( | |
bot, chatbot, chatbot | |
) | |
demo.launch() |