File size: 9,532 Bytes
57517e4 0781dee 57517e4 0781dee 1770619 0781dee 099971c 57517e4 0781dee 57517e4 0781dee 57517e4 e71bf6d 0781dee 57517e4 0781dee e71bf6d 0781dee e71bf6d 0781dee 15be706 0781dee 099971c 0781dee 04f14aa f265442 09de96b f265442 09de96b 04f14aa f265442 09de96b 04f14aa 099971c 4f9b639 099971c 04f14aa 099971c f265442 04f14aa 099971c f265442 5c81361 f265442 e71bf6d f265442 c35be75 e71bf6d f265442 e52de52 f265442 c35be75 f265442 945e3c9 c5ccc8e e52de52 44a1d05 db63e0a 4f9b639 9cbdc62 db63e0a 9cbdc62 e52de52 fd78f43 9cbdc62 f265442 04f14aa 44a1d05 04f14aa f265442 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 |
import gradio as gr
import numpy as np
import json
import joblib
import tensorflow as tf
import pandas as pd
from joblib import load
from tensorflow.keras.models import load_model
from sklearn.preprocessing import MinMaxScaler
import matplotlib.pyplot as plt
import os
import sklearn
# Display library versions
print(f"Gradio version: {gr.__version__}")
print(f"NumPy version: {np.__version__}")
print(f"Scikit-learn version: {sklearn.__version__}")
print(f"Joblib version: {joblib.__version__}")
print(f"TensorFlow version: {tf.__version__}")
print(f"Pandas version: {pd.__version__}")
# Directory paths for the saved models
script_dir = os.path.dirname(os.path.abspath(__file__))
scaler_path = os.path.join(script_dir, 'toolkit', 'scaler_X.json')
rf_model_path = os.path.join(script_dir, 'toolkit', 'rf_model.joblib')
mlp_model_path = os.path.join(script_dir, 'toolkit', 'mlp_model.keras')
meta_model_path = os.path.join(script_dir, 'toolkit', 'meta_model.joblib')
image_path = os.path.join(script_dir, 'toolkit', 'car.png')
# Load the scaler and models
try:
# Load the scaler
with open(scaler_path, 'r') as f:
scaler_params = json.load(f)
scaler_X = MinMaxScaler()
scaler_X.scale_ = np.array(scaler_params["scale_"])
scaler_X.min_ = np.array(scaler_params["min_"])
scaler_X.data_min_ = np.array(scaler_params["data_min_"])
scaler_X.data_max_ = np.array(scaler_params["data_max_"])
scaler_X.data_range_ = np.array(scaler_params["data_range_"])
scaler_X.n_features_in_ = scaler_params["n_features_in_"]
scaler_X.feature_names_in_ = np.array(scaler_params["feature_names_in_"])
# Load the models
loaded_rf_model = load(rf_model_path)
print("Random Forest model loaded successfully.")
loaded_mlp_model = load_model(mlp_model_path)
print("MLP model loaded successfully.")
loaded_meta_model = load(meta_model_path)
print("Meta model loaded successfully.")
except Exception as e:
print(f"Error loading models or scaler: {e}")
def predict_and_plot(velocity, temperature, precipitation, humidity):
try:
# Prepare the example data
example_data = pd.DataFrame({
'Velocity(mph)': [velocity],
'Temperature': [temperature],
'Precipitation': [precipitation],
'Humidity': [humidity]
})
# Scale the example data
example_data_scaled = scaler_X.transform(example_data)
# Function to predict contamination levels and gradients
def predict_contamination_and_gradients(example_data_scaled):
# Predict using MLP model
mlp_predictions_contamination, mlp_predictions_gradients = loaded_mlp_model.predict(example_data_scaled)
# Predict using RF model
rf_predictions = loaded_rf_model.predict(example_data_scaled)
# Combine predictions for meta model
combined_features = np.concatenate([np.concatenate([mlp_predictions_contamination, mlp_predictions_gradients], axis=1), rf_predictions], axis=1)
# Predict using meta model
meta_predictions = loaded_meta_model.predict(combined_features)
return meta_predictions[:, :6], meta_predictions[:, 6:] # Split predictions into contamination and gradients
# Predict contamination levels and gradients for the single example
contamination_levels, gradients = predict_contamination_and_gradients(example_data_scaled)
# Simulate contamination levels at multiple time intervals
time_intervals = np.arange(0, 3601, 60) # Simulating time intervals from 0 to 600 seconds
# Generate simulated contamination levels (linear interpolation between predicted values)
simulated_contamination_levels = np.array([
np.linspace(contamination_levels[0][i], contamination_levels[0][i] * 2, len(time_intervals))
for i in range(contamination_levels.shape[1])
]).T
# Function to calculate cleaning time using linear interpolation
def calculate_cleaning_time(time_intervals, contamination_levels, threshold=0.4):
cleaning_times = []
for i in range(contamination_levels.shape[1]):
levels = contamination_levels[:, i]
for j in range(1, len(levels)):
if levels[j-1] <= threshold <= levels[j]:
# Linear interpolation
t1, t2 = time_intervals[j-1], time_intervals[j]
c1, c2 = levels[j-1], levels[j]
cleaning_time = t1 + (threshold - c1) * (t2 - t1) / (c2 - c1)
cleaning_times.append(cleaning_time)
break
else:
cleaning_times.append(time_intervals[-1]) # If threshold is not reached
return cleaning_times
# Calculate cleaning times for all 6 lidars
cleaning_times = calculate_cleaning_time(time_intervals, simulated_contamination_levels)
# Lidar names
lidar_names = ['F/L', 'F/R', 'Left', 'Right', 'Roof', 'Rear']
# Plot the graph
fig, ax = plt.subplots(figsize=(12, 8))
for i in range(simulated_contamination_levels.shape[1]):
ax.plot(time_intervals, simulated_contamination_levels[:, i], label=f'{lidar_names[i]}')
ax.axhline(y=0.4, color='r', linestyle='--', label='Contamination Threshold' if i == 0 else "")
if i < len(cleaning_times):
ax.scatter(cleaning_times[i], 0.4, color='k') # Mark the cleaning time point
ax.set_title('Contamination Levels Over Time for Each Lidar')
ax.set_xlabel('Time (seconds)')
ax.set_ylabel('Contamination Level')
ax.legend()
ax.grid(True)
# Flatten the results into a single list of 19 outputs (1 plot + 6 contamination + 6 gradients + 6 cleaning times)
plot_output = fig
contamination_output = [f"{val * 100:.2f}%" for val in contamination_levels[0]]
gradients_output = [f"{val:.4f}" for val in gradients[0]]
cleaning_time_output = [f"{val:.2f}" for val in cleaning_times]
return [plot_output] + contamination_output + gradients_output + cleaning_time_output
except Exception as e:
print(f"Error in Gradio interface: {e}")
return [plt.figure()] + ["Error"] * 18
inputs = [
gr.Slider(minimum=0, maximum=100, value=50, step=0.05, label="Velocity (mph)"),
gr.Slider(minimum=-2, maximum=30, value=0, step=0.5, label="Temperature (°C)"),
gr.Slider(minimum=0, maximum=1, value=0, step=0.01, label="Precipitation (inch)"),
gr.Slider(minimum=0, maximum=100, value=50, label="Humidity (%)")
]
contamination_outputs = [
gr.Textbox(label="Front Left Contamination"),
gr.Textbox(label="Front Right Contamination"),
gr.Textbox(label="Left Contamination"),
gr.Textbox(label="Right Contamination"),
gr.Textbox(label="Roof Contamination"),
gr.Textbox(label="Rear Contamination")
]
gradients_outputs = [
gr.Textbox(label="Front Left Gradient"),
gr.Textbox(label="Front Right Gradient"),
gr.Textbox(label="Left Gradient"),
gr.Textbox(label="Right Gradient"),
gr.Textbox(label="Roof Gradient"),
gr.Textbox(label="Rear Gradient")
]
cleaning_time_outputs = [
gr.Textbox(label="Front Left Cleaning Time"),
gr.Textbox(label="Front Right Cleaning Time"),
gr.Textbox(label="Left Cleaning Time"),
gr.Textbox(label="Right Cleaning Time"),
gr.Textbox(label="Roof Cleaning Time"),
gr.Textbox(label="Rear Cleaning Time")
]
with gr.Blocks(css=".column-container {height: 100%; display: flex; flex-direction: column; justify-content: space-between;}") as demo:
gr.Markdown("<h1 style='text-align: center;'>Environmental Factor-Based Contamination, Gradient, & Cleaning Time Prediction</h1>")
gr.Markdown("This application predicts the contamination levels, gradients, and cleaning times for different parts of a car's LiDAR system based on environmental factors such as velocity, temperature, precipitation, and humidity.")
# Top Section: Inputs and Car Image
with gr.Row():
with gr.Column(scale=2, elem_classes="column-container"):
gr.Markdown("### Input Parameters")
for inp in inputs:
inp.render()
submit_button = gr.Button(value="Submit", variant="primary")
clear_button = gr.Button(value="Clear")
with gr.Column(scale=1):
gr.Markdown("### Location of LiDARs")
gr.Image(image_path)
# Bottom Section: Outputs (Three columns)
with gr.Row():
with gr.Column(scale=2):
gr.Markdown("### Contamination Predictions ± 7.1%")
for out in contamination_outputs:
out.render()
with gr.Column(scale=2):
gr.Markdown("### Gradient Predictions")
for out in gradients_outputs:
out.render()
with gr.Column(scale=2):
gr.Markdown("### Cleaning Time (s) Predictions")
for out in cleaning_time_outputs:
out.render()
# Graph below the outputs
with gr.Row():
plot_output = gr.Plot(label="Contamination Levels Over Time")
submit_button.click(
fn=predict_and_plot,
inputs=inputs,
outputs=[plot_output] + contamination_outputs + gradients_outputs + cleaning_time_outputs
)
clear_button.click(fn=lambda: None)
demo.launch()
|