File size: 9,532 Bytes
57517e4
 
 
 
 
 
 
 
 
0781dee
57517e4
0781dee
 
1770619
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0781dee
099971c
57517e4
0781dee
 
 
 
 
 
 
57517e4
0781dee
 
57517e4
e71bf6d
 
0781dee
 
57517e4
0781dee
 
 
 
 
 
 
 
 
e71bf6d
0781dee
e71bf6d
 
0781dee
 
15be706
0781dee
 
 
099971c
 
0781dee
 
04f14aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f265442
09de96b
f265442
 
09de96b
 
04f14aa
 
f265442
09de96b
 
 
 
 
04f14aa
 
099971c
4f9b639
099971c
04f14aa
099971c
 
f265442
 
04f14aa
099971c
f265442
 
 
5c81361
f265442
 
 
 
 
 
 
 
 
 
 
 
 
e71bf6d
 
 
 
 
 
 
 
 
f265442
 
 
 
 
 
 
 
 
c35be75
e71bf6d
 
f265442
e52de52
f265442
c35be75
 
 
 
 
 
f265442
945e3c9
c5ccc8e
e52de52
 
44a1d05
db63e0a
 
4f9b639
9cbdc62
 
db63e0a
 
9cbdc62
 
 
 
e52de52
fd78f43
9cbdc62
 
f265442
04f14aa
 
44a1d05
 
 
 
 
 
 
 
04f14aa
f265442
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import gradio as gr
import numpy as np
import json
import joblib
import tensorflow as tf
import pandas as pd
from joblib import load
from tensorflow.keras.models import load_model
from sklearn.preprocessing import MinMaxScaler
import matplotlib.pyplot as plt
import os
import sklearn

# Display library versions
print(f"Gradio version: {gr.__version__}")
print(f"NumPy version: {np.__version__}")
print(f"Scikit-learn version: {sklearn.__version__}")
print(f"Joblib version: {joblib.__version__}")
print(f"TensorFlow version: {tf.__version__}")
print(f"Pandas version: {pd.__version__}")

# Directory paths for the saved models
script_dir = os.path.dirname(os.path.abspath(__file__))
scaler_path = os.path.join(script_dir, 'toolkit', 'scaler_X.json')
rf_model_path = os.path.join(script_dir, 'toolkit', 'rf_model.joblib')
mlp_model_path = os.path.join(script_dir, 'toolkit', 'mlp_model.keras')
meta_model_path = os.path.join(script_dir, 'toolkit', 'meta_model.joblib')
image_path = os.path.join(script_dir, 'toolkit', 'car.png')

# Load the scaler and models
try:
    # Load the scaler
    with open(scaler_path, 'r') as f:
        scaler_params = json.load(f)
    scaler_X = MinMaxScaler()
    scaler_X.scale_ = np.array(scaler_params["scale_"])
    scaler_X.min_ = np.array(scaler_params["min_"])
    scaler_X.data_min_ = np.array(scaler_params["data_min_"])
    scaler_X.data_max_ = np.array(scaler_params["data_max_"])
    scaler_X.data_range_ = np.array(scaler_params["data_range_"])
    scaler_X.n_features_in_ = scaler_params["n_features_in_"]
    scaler_X.feature_names_in_ = np.array(scaler_params["feature_names_in_"])

    # Load the models
    loaded_rf_model = load(rf_model_path)
    print("Random Forest model loaded successfully.")
    loaded_mlp_model = load_model(mlp_model_path)
    print("MLP model loaded successfully.")
    loaded_meta_model = load(meta_model_path)
    print("Meta model loaded successfully.")
except Exception as e:
    print(f"Error loading models or scaler: {e}")

def predict_and_plot(velocity, temperature, precipitation, humidity):
    try:
        # Prepare the example data
        example_data = pd.DataFrame({
            'Velocity(mph)': [velocity],
            'Temperature': [temperature],
            'Precipitation': [precipitation],
            'Humidity': [humidity]
        })

        # Scale the example data
        example_data_scaled = scaler_X.transform(example_data)

        # Function to predict contamination levels and gradients
        def predict_contamination_and_gradients(example_data_scaled):
            # Predict using MLP model
            mlp_predictions_contamination, mlp_predictions_gradients = loaded_mlp_model.predict(example_data_scaled)

            # Predict using RF model
            rf_predictions = loaded_rf_model.predict(example_data_scaled)

            # Combine predictions for meta model
            combined_features = np.concatenate([np.concatenate([mlp_predictions_contamination, mlp_predictions_gradients], axis=1), rf_predictions], axis=1)

            # Predict using meta model
            meta_predictions = loaded_meta_model.predict(combined_features)

            return meta_predictions[:, :6], meta_predictions[:, 6:]  # Split predictions into contamination and gradients

        # Predict contamination levels and gradients for the single example
        contamination_levels, gradients = predict_contamination_and_gradients(example_data_scaled)

        # Simulate contamination levels at multiple time intervals
        time_intervals = np.arange(0, 3601, 60)  # Simulating time intervals from 0 to 600 seconds

        # Generate simulated contamination levels (linear interpolation between predicted values)
        simulated_contamination_levels = np.array([
            np.linspace(contamination_levels[0][i], contamination_levels[0][i] * 2, len(time_intervals))
            for i in range(contamination_levels.shape[1])
        ]).T

        # Function to calculate cleaning time using linear interpolation
        def calculate_cleaning_time(time_intervals, contamination_levels, threshold=0.4):
            cleaning_times = []
            for i in range(contamination_levels.shape[1]):
                levels = contamination_levels[:, i]
                for j in range(1, len(levels)):
                    if levels[j-1] <= threshold <= levels[j]:
                        # Linear interpolation
                        t1, t2 = time_intervals[j-1], time_intervals[j]
                        c1, c2 = levels[j-1], levels[j]
                        cleaning_time = t1 + (threshold - c1) * (t2 - t1) / (c2 - c1)
                        cleaning_times.append(cleaning_time)
                        break
                else:
                    cleaning_times.append(time_intervals[-1])  # If threshold is not reached
            return cleaning_times

        # Calculate cleaning times for all 6 lidars
        cleaning_times = calculate_cleaning_time(time_intervals, simulated_contamination_levels)

        # Lidar names
        lidar_names = ['F/L', 'F/R', 'Left', 'Right', 'Roof', 'Rear']

        # Plot the graph
        fig, ax = plt.subplots(figsize=(12, 8))

        for i in range(simulated_contamination_levels.shape[1]):
            ax.plot(time_intervals, simulated_contamination_levels[:, i], label=f'{lidar_names[i]}')
            ax.axhline(y=0.4, color='r', linestyle='--', label='Contamination Threshold' if i == 0 else "")
            if i < len(cleaning_times):
                ax.scatter(cleaning_times[i], 0.4, color='k')  # Mark the cleaning time point

        ax.set_title('Contamination Levels Over Time for Each Lidar')
        ax.set_xlabel('Time (seconds)')
        ax.set_ylabel('Contamination Level')
        ax.legend()
        ax.grid(True)
        
        # Flatten the results into a single list of 19 outputs (1 plot + 6 contamination + 6 gradients + 6 cleaning times)
        plot_output = fig
        contamination_output = [f"{val * 100:.2f}%" for val in contamination_levels[0]]
        gradients_output = [f"{val:.4f}" for val in gradients[0]]
        cleaning_time_output = [f"{val:.2f}" for val in cleaning_times]

        return [plot_output] + contamination_output + gradients_output + cleaning_time_output

    except Exception as e:
        print(f"Error in Gradio interface: {e}")
        return [plt.figure()] + ["Error"] * 18

inputs = [
    gr.Slider(minimum=0, maximum=100, value=50, step=0.05, label="Velocity (mph)"),
    gr.Slider(minimum=-2, maximum=30, value=0, step=0.5, label="Temperature (°C)"),
    gr.Slider(minimum=0, maximum=1, value=0, step=0.01, label="Precipitation (inch)"),
    gr.Slider(minimum=0, maximum=100, value=50, label="Humidity (%)")
]

contamination_outputs = [
    gr.Textbox(label="Front Left Contamination"),
    gr.Textbox(label="Front Right Contamination"),
    gr.Textbox(label="Left Contamination"),
    gr.Textbox(label="Right Contamination"),
    gr.Textbox(label="Roof Contamination"),
    gr.Textbox(label="Rear Contamination")
]

gradients_outputs = [
    gr.Textbox(label="Front Left Gradient"),
    gr.Textbox(label="Front Right Gradient"),
    gr.Textbox(label="Left Gradient"),
    gr.Textbox(label="Right Gradient"),
    gr.Textbox(label="Roof Gradient"),
    gr.Textbox(label="Rear Gradient")
]

cleaning_time_outputs = [
    gr.Textbox(label="Front Left Cleaning Time"),
    gr.Textbox(label="Front Right Cleaning Time"),
    gr.Textbox(label="Left Cleaning Time"),
    gr.Textbox(label="Right Cleaning Time"),
    gr.Textbox(label="Roof Cleaning Time"),
    gr.Textbox(label="Rear Cleaning Time")
]

with gr.Blocks(css=".column-container {height: 100%; display: flex; flex-direction: column; justify-content: space-between;}") as demo:
    gr.Markdown("<h1 style='text-align: center;'>Environmental Factor-Based Contamination, Gradient, & Cleaning Time Prediction</h1>")
    gr.Markdown("This application predicts the contamination levels, gradients, and cleaning times for different parts of a car's LiDAR system based on environmental factors such as velocity, temperature, precipitation, and humidity.")
    
    # Top Section: Inputs and Car Image
    with gr.Row():
        with gr.Column(scale=2, elem_classes="column-container"):
            gr.Markdown("### Input Parameters")
            for inp in inputs:
                inp.render()
            submit_button = gr.Button(value="Submit", variant="primary")
            clear_button = gr.Button(value="Clear")

        with gr.Column(scale=1):
            gr.Markdown("### Location of LiDARs")
            gr.Image(image_path)

    # Bottom Section: Outputs (Three columns)
    with gr.Row():
        with gr.Column(scale=2):
            gr.Markdown("### Contamination Predictions ± 7.1%")
            for out in contamination_outputs:
                out.render()

        with gr.Column(scale=2):
            gr.Markdown("### Gradient Predictions")
            for out in gradients_outputs:
                out.render()

        with gr.Column(scale=2):
            gr.Markdown("### Cleaning Time (s) Predictions")
            for out in cleaning_time_outputs:
                out.render()

    # Graph below the outputs
    with gr.Row():
        plot_output = gr.Plot(label="Contamination Levels Over Time")

    submit_button.click(
        fn=predict_and_plot, 
        inputs=inputs, 
        outputs=[plot_output] + contamination_outputs + gradients_outputs + cleaning_time_outputs
    )
    clear_button.click(fn=lambda: None)

demo.launch()