import pathlib import gradio as gr import transformers from transformers import AutoTokenizer from transformers import AutoModelForCausalLM from transformers import GenerationConfig from typing import List, Dict, Union from typing import Any, TypeVar Pathable = Union[str, pathlib.Path] def load_model(name: str) -> Any: return AutoModelForCausalLM.from_pretrained(name) def load_tokenizer(name: str) -> Any: return AutoTokenizer.from_pretrained(name) def create_generator(): return GenerationConfig( temperature=1.0, top_p=0.75, num_beams=4, ) def generate_prompt(instruction, input=None): if input: return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. ### Instruction: {instruction} ### Input: {input} ### Response:""" else: return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {instruction} ### Response:""" # model= load_model(name = 's3nh/pythia-410m-70k-steps-self-instruct-polish') # tokenizer = load_tokenizer(name = 's3nh/pythia-410m-70k-steps-self-instruct-polish') generation_config = create_generator() def evaluate(instruction, input, model, tokenizer): prompt = generate_prompt(instruction, input) inputs = tokenizer(prompt, return_tensors="pt") input_ids = inputs["input_ids"] generation_output = model.generate( input_ids=input_ids, generation_config=generation_config, return_dict_in_generate=True, output_scores=True, max_new_tokens=256 ) result = [] for s in generation_output.sequences: output = tokenizer.decode(s) result.append( output.split("### Response:")[1].strip()) return ' '.join(el for el in result) def inference(model_name, text, input): model = load_model(model_name) tokenizer = load_tokenizer(model_name) output = evaluate(instruction = text, input = input, model = model, tokenizer = tokenizer) return output def choose_model(name): return load_model(name), load_tokenizer(name) io = gr.Interface( inference, inputs = [ gr.Dropdown(["s3nh/pythia-1.4b-deduped-16k-steps-self-instruct-polish", "s3nh/pythia-410m-91k-steps-self-instruct-polish", "s3nh/tiny-gpt2-instruct-polish", "s3nh/pythia-410m-103k-steps-self-instruct-polish", "https://huggingface.co/s3nh/DialoGPT-large-instruct-polish-3000-steps", "https://huggingface.co/s3nh/pythia-410m-70k-steps-self-instruct-polish", "https://huggingface.co/s3nh/tiny-gpt2-instruct-polish", "s3nh/Cerebras-GPT-590M-3000steps-polish", "s3nh/gpt-j-6b-3500steps-polish", "s3nh/DialoGPT-medium-4000steps-polish", "s3nh/DialoGPT-small-5000steps-polish", "Lajonbot/pythia-160m-53500-self-instruct-polish", "Lajonbot/gpt-neo-125m-self-instruct-polish-66k-steps", "Lajonbot/pythia-160m-33k-steps-self-instruct-polish", "Lajonbot/pythia-410m-21k-steps-self-instruct-polish", "Lajonbot/llama-30b-hf-pl-lora", "Amazon-LightGPT-pl-qlora", "wizard-mega-13b-pl-lora", "stablelm-base-alpha-3b-Lora-polish", "dolly-v2-3b-Lora-polish", "LaMini-GPT-1.5B-Lora-polish"]), gr.Textbox( lines = 3, max_lines = 10, placeholder = "Add question here", interactive = True, show_label = False ), gr.Textbox( lines = 3, max_lines = 10, placeholder = "Add context here", interactive = True, show_label = False )], outputs = [gr.Textbox(lines = 1, label = 'Pythia410m', interactive = False)], cache_examples = False, ) io.launch(debug = True)