Spaces:
Runtime error
Runtime error
rynmurdock
commited on
Commit
•
35ef920
1
Parent(s):
c5ca37a
- app.py +207 -68
- checkpoint-31250/checkpoint-decoder-31250/pytorch_model.bin +1 -1
- checkpoint-31250/checkpoint-decoder-31250/training_decoder_args.bin +2 -2
- checkpoint-31250/checkpoint-encoder-31250/pytorch_model.bin +1 -1
- checkpoint-31250/checkpoint-encoder-31250/training_encoder_args.bin +2 -2
- checkpoint-31250/checkpoint-full-31250/training.bin +2 -2
- real_im_emb_plot.jpg +0 -0
app.py
CHANGED
@@ -7,53 +7,194 @@ Original file is located at
|
|
7 |
https://colab.research.google.com/drive/1I47sLakpuwERGzn-XoNct67mwiDS1mQD
|
8 |
"""
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
import torch
|
11 |
import torch.nn as nn
|
12 |
import torch.nn.functional as F
|
13 |
torch.set_float32_matmul_precision('high')
|
14 |
|
15 |
from tqdm import tqdm
|
16 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
17 |
-
|
18 |
-
class BottleneckT5Autoencoder:
|
19 |
-
def __init__(self, model_path: str, device='cuda'):
|
20 |
-
self.device = device
|
21 |
-
self.tokenizer = AutoTokenizer.from_pretrained(model_path, model_max_length=512, torch_dtype=torch.bfloat16)
|
22 |
-
self.model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True).to(self.device)
|
23 |
-
self.model.eval()
|
24 |
-
# self.model = torch.compile(self.model)
|
25 |
-
|
26 |
-
|
27 |
-
def embed(self, text: str) -> torch.FloatTensor:
|
28 |
-
inputs = self.tokenizer(text, return_tensors='pt', padding=True).to(self.device)
|
29 |
-
decoder_inputs = self.tokenizer('', return_tensors='pt').to(self.device)
|
30 |
-
return self.model(
|
31 |
-
**inputs,
|
32 |
-
decoder_input_ids=decoder_inputs['input_ids'],
|
33 |
-
encode_only=True,
|
34 |
-
)
|
35 |
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
import gradio as gr
|
59 |
import numpy as np
|
@@ -64,7 +205,7 @@ import pandas as pd
|
|
64 |
import random
|
65 |
import time
|
66 |
|
67 |
-
|
68 |
dtype = torch.bfloat16
|
69 |
torch.set_grad_enabled(False)
|
70 |
|
@@ -80,13 +221,20 @@ start_time = time.time()
|
|
80 |
def generate(prompt, in_embs=None,):
|
81 |
if prompt != '':
|
82 |
print(prompt)
|
83 |
-
in_embs = in_embs / in_embs.abs().max() * .
|
84 |
-
in_embs =
|
85 |
else:
|
86 |
print('From embeds.')
|
87 |
-
in_embs = in_embs / in_embs.abs().max() * .
|
88 |
-
|
89 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
return text, in_embs.to('cpu')
|
91 |
|
92 |
|
@@ -103,7 +251,6 @@ def next_one(embs, ys, calibrate_prompts):
|
|
103 |
if len(calibrate_prompts) > 0:
|
104 |
print('######### Calibrating with sample prompts #########')
|
105 |
prompt = calibrate_prompts.pop(0)
|
106 |
-
print(prompt)
|
107 |
text, img_embs = generate(prompt)
|
108 |
embs += img_embs
|
109 |
print(len(embs))
|
@@ -114,12 +261,12 @@ def next_one(embs, ys, calibrate_prompts):
|
|
114 |
|
115 |
# handle case where every instance of calibration prompts is 'Neither' or 'Like' or 'Dislike'
|
116 |
if len(list(set(ys))) <= 1:
|
117 |
-
embs.append(.01*torch.randn(
|
118 |
-
embs.append(.01*torch.randn(
|
119 |
ys.append(0)
|
120 |
ys.append(1)
|
121 |
if len(list(ys)) < 10:
|
122 |
-
embs += [.01*torch.randn(
|
123 |
ys += [0] * 3
|
124 |
|
125 |
pos_indices = [i for i in range(len(embs)) if ys[i] == 1]
|
@@ -129,13 +276,6 @@ def next_one(embs, ys, calibrate_prompts):
|
|
129 |
random.shuffle(pos_indices)
|
130 |
random.shuffle(neg_indices)
|
131 |
|
132 |
-
#if len(pos_indices) - len(neg_indices) > 48 and len(pos_indices) > 80:
|
133 |
-
# pos_indices = pos_indices[32:]
|
134 |
-
if len(neg_indices) - len(pos_indices) > 48/16 and len(pos_indices) > 6:
|
135 |
-
pos_indices = pos_indices[5:]
|
136 |
-
if len(neg_indices) - len(pos_indices) > 48/16 and len(neg_indices) > 6:
|
137 |
-
neg_indices = neg_indices[5:]
|
138 |
-
|
139 |
|
140 |
if len(neg_indices) > 25:
|
141 |
neg_indices = neg_indices[1:]
|
@@ -150,17 +290,17 @@ def next_one(embs, ys, calibrate_prompts):
|
|
150 |
indices = list(range(len(embs)))
|
151 |
|
152 |
# also add the latest 0 and the latest 1
|
153 |
-
has_0 = False
|
154 |
-
has_1 = False
|
155 |
-
for i in reversed(range(len(ys))):
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
|
165 |
# we may have just encountered a rare multi-threading diffusers issue (https://github.com/huggingface/diffusers/issues/5749);
|
166 |
# this ends up adding a rating but losing an embedding, it seems.
|
@@ -177,7 +317,6 @@ def next_one(embs, ys, calibrate_prompts):
|
|
177 |
print('Gathering coefficients')
|
178 |
lin_class = SVC(max_iter=50000, kernel='linear', class_weight='balanced', C=.1).fit(feature_embs, chosen_y)
|
179 |
coef_ = torch.tensor(lin_class.coef_, dtype=torch.double)
|
180 |
-
coef_ = coef_ / coef_.abs().max() * 3
|
181 |
print(coef_.shape, 'COEF')
|
182 |
print('Gathered')
|
183 |
|
|
|
7 |
https://colab.research.google.com/drive/1I47sLakpuwERGzn-XoNct67mwiDS1mQD
|
8 |
"""
|
9 |
|
10 |
+
import matplotlib.pyplot as plt
|
11 |
+
import matplotlib
|
12 |
+
|
13 |
+
import argparse
|
14 |
+
import glob
|
15 |
+
import logging
|
16 |
+
import os
|
17 |
+
import pickle
|
18 |
+
import random
|
19 |
+
|
20 |
+
|
21 |
+
import torch
|
22 |
+
import torch.nn.functional as F
|
23 |
+
import numpy as np
|
24 |
+
|
25 |
+
from tqdm import tqdm, trange
|
26 |
+
from types import SimpleNamespace
|
27 |
+
|
28 |
+
import sys
|
29 |
+
sys.path.append('./Optimus/code/examples/big_ae/')
|
30 |
+
sys.path.append('./Optimus/code/')
|
31 |
+
|
32 |
+
from pytorch_transformers import GPT2Config, OpenAIGPTConfig, XLNetConfig, TransfoXLConfig, BertConfig
|
33 |
+
from pytorch_transformers import GPT2LMHeadModel, GPT2Tokenizer, GPT2ForLatentConnector
|
34 |
+
from pytorch_transformers import OpenAIGPTLMHeadModel, OpenAIGPTTokenizer
|
35 |
+
from pytorch_transformers import XLNetLMHeadModel, XLNetTokenizer
|
36 |
+
from pytorch_transformers import TransfoXLLMHeadModel, TransfoXLTokenizer
|
37 |
+
from pytorch_transformers import BertForLatentConnector, BertTokenizer
|
38 |
+
|
39 |
+
from modules import VAE
|
40 |
+
|
41 |
import torch
|
42 |
import torch.nn as nn
|
43 |
import torch.nn.functional as F
|
44 |
torch.set_float32_matmul_precision('high')
|
45 |
|
46 |
from tqdm import tqdm
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
+
################################################
|
49 |
+
|
50 |
+
|
51 |
+
|
52 |
+
def top_k_top_p_filtering(logits, top_k=0, top_p=0.0, filter_value=-float('Inf')):
|
53 |
+
""" Filter a distribution of logits using top-k and/or nucleus (top-p) filtering
|
54 |
+
Args:
|
55 |
+
logits: logits distribution shape (vocabulary size)
|
56 |
+
top_k > 0: keep only top k tokens with highest probability (top-k filtering).
|
57 |
+
top_p > 0.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering).
|
58 |
+
Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751)
|
59 |
+
From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317
|
60 |
+
"""
|
61 |
+
assert logits.dim() == 1 # batch size 1 for now - could be updated for more but the code would be less clear
|
62 |
+
top_k = min(top_k, logits.size(-1)) # Safety check
|
63 |
+
if top_k > 0:
|
64 |
+
# Remove all tokens with a probability less than the last token of the top-k
|
65 |
+
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
|
66 |
+
logits[indices_to_remove] = filter_value
|
67 |
+
|
68 |
+
if top_p > 0.0:
|
69 |
+
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
|
70 |
+
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
|
71 |
+
|
72 |
+
# Remove tokens with cumulative probability above the threshold
|
73 |
+
sorted_indices_to_remove = cumulative_probs > top_p
|
74 |
+
# Shift the indices to the right to keep also the first token above the threshold
|
75 |
+
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
|
76 |
+
sorted_indices_to_remove[..., 0] = 0
|
77 |
+
|
78 |
+
indices_to_remove = sorted_indices[sorted_indices_to_remove]
|
79 |
+
logits[indices_to_remove] = filter_value
|
80 |
+
return logits
|
81 |
+
|
82 |
+
def sample_sequence_conditional(model, length, context, past=None, num_samples=1, temperature=1, top_k=0, top_p=0.0, device='cpu', decoder_tokenizer=None):
|
83 |
+
|
84 |
+
context = torch.tensor(context, dtype=torch.long, device=device)
|
85 |
+
context = context.unsqueeze(0).repeat(num_samples, 1)
|
86 |
+
generated = context
|
87 |
+
with torch.no_grad():
|
88 |
+
while True:
|
89 |
+
# for _ in trange(length):
|
90 |
+
inputs = {'input_ids': generated, 'past': past}
|
91 |
+
outputs = model(**inputs) # Note: we could also use 'past' with GPT-2/Transfo-XL/XLNet (cached hidden-states)
|
92 |
+
next_token_logits = outputs[0][0, -1, :] / temperature
|
93 |
+
filtered_logits = top_k_top_p_filtering(next_token_logits, top_k=top_k, top_p=top_p)
|
94 |
+
next_token = torch.multinomial(F.softmax(filtered_logits, dim=-1), num_samples=1)
|
95 |
+
generated = torch.cat((generated, next_token.unsqueeze(0)), dim=1)
|
96 |
+
|
97 |
+
# pdb.set_trace()
|
98 |
+
if next_token.unsqueeze(0)[0,0].item() == decoder_tokenizer.encode('<EOS>')[0]:
|
99 |
+
break
|
100 |
+
|
101 |
+
return generated
|
102 |
+
|
103 |
+
|
104 |
+
def latent_code_from_text(text,):# args):
|
105 |
+
tokenized1 = tokenizer_encoder.encode(text)
|
106 |
+
tokenized1 = [101] + tokenized1 + [102]
|
107 |
+
coded1 = torch.Tensor([tokenized1])
|
108 |
+
coded1 =torch.Tensor.long(coded1)
|
109 |
+
with torch.no_grad():
|
110 |
+
x0 = coded1
|
111 |
+
x0 = x0.to('cuda')
|
112 |
+
pooled_hidden_fea = model_vae.encoder(x0, attention_mask=(x0 > 0).float())[1]
|
113 |
+
mean, logvar = model_vae.encoder.linear(pooled_hidden_fea).chunk(2, -1)
|
114 |
+
latent_z = mean.squeeze(1)
|
115 |
+
coded_length = len(tokenized1)
|
116 |
+
return latent_z, coded_length
|
117 |
+
|
118 |
+
# args
|
119 |
+
def text_from_latent_code(latent_z):
|
120 |
+
past = latent_z
|
121 |
+
context_tokens = tokenizer_decoder.encode('<BOS>')
|
122 |
+
|
123 |
+
length = 128 # maximum length, but not used
|
124 |
+
out = sample_sequence_conditional(
|
125 |
+
model=model_vae.decoder,
|
126 |
+
context=context_tokens,
|
127 |
+
past=past,
|
128 |
+
length= length, # Chunyuan: Fix length; or use <EOS> to complete a sentence
|
129 |
+
temperature=.5,
|
130 |
+
top_k=100,
|
131 |
+
top_p=.95,
|
132 |
+
device='cuda',
|
133 |
+
decoder_tokenizer = tokenizer_decoder
|
134 |
+
)
|
135 |
+
text_x1 = tokenizer_decoder.decode(out[0,:].tolist(), clean_up_tokenization_spaces=True)
|
136 |
+
text_x1 = text_x1.split()[1:-1]
|
137 |
+
text_x1 = ' '.join(text_x1)
|
138 |
+
return text_x1
|
139 |
+
|
140 |
+
|
141 |
+
################################################
|
142 |
+
# Load model
|
143 |
+
|
144 |
+
|
145 |
+
MODEL_CLASSES = {
|
146 |
+
'gpt2': (GPT2Config, GPT2ForLatentConnector, GPT2Tokenizer),
|
147 |
+
'bert': (BertConfig, BertForLatentConnector, BertTokenizer)
|
148 |
+
}
|
149 |
|
150 |
+
latent_size = 768
|
151 |
+
model_path = './checkpoint-31250/checkpoint-full-31250/'
|
152 |
+
encoder_path = './checkpoint-31250/checkpoint-encoder-31250/'
|
153 |
+
decoder_path = './checkpoint-31250/checkpoint-decoder-31250/'
|
154 |
+
block_size = 100
|
155 |
+
|
156 |
+
# Load a trained Encoder model and vocabulary that you have fine-tuned
|
157 |
+
encoder_config_class, encoder_model_class, encoder_tokenizer_class = MODEL_CLASSES['bert']
|
158 |
+
model_encoder = encoder_model_class.from_pretrained(encoder_path, latent_size=latent_size)
|
159 |
+
tokenizer_encoder = encoder_tokenizer_class.from_pretrained('bert-base-cased', do_lower_case=True)
|
160 |
+
|
161 |
+
model_encoder.to('cuda')
|
162 |
+
if block_size <= 0:
|
163 |
+
block_size = tokenizer_encoder.max_len_single_sentence # Our input block size will be the max possible for the model
|
164 |
+
block_size = min(block_size, tokenizer_encoder.max_len_single_sentence)
|
165 |
+
|
166 |
+
# Load a trained Decoder model and vocabulary that you have fine-tuned
|
167 |
+
decoder_config_class, decoder_model_class, decoder_tokenizer_class = MODEL_CLASSES['gpt2']
|
168 |
+
model_decoder = decoder_model_class.from_pretrained(decoder_path, latent_size=latent_size)
|
169 |
+
tokenizer_decoder = decoder_tokenizer_class.from_pretrained('gpt2', do_lower_case=False)
|
170 |
+
model_decoder.to('cuda')
|
171 |
+
if block_size <= 0:
|
172 |
+
block_size = tokenizer_decoder.max_len_single_sentence # Our input block size will be the max possible for the model
|
173 |
+
block_size = min(block_size, tokenizer_decoder.max_len_single_sentence)
|
174 |
+
|
175 |
+
# Load full model
|
176 |
+
output_full_dir = '/home/ryn_mote/Misc/generative_recommender/text_space/'
|
177 |
+
checkpoint = torch.load(os.path.join(model_path, 'training.bin'))
|
178 |
+
|
179 |
+
# Chunyuan: Add Padding token to GPT2
|
180 |
+
special_tokens_dict = {'pad_token': '<PAD>', 'bos_token': '<BOS>', 'eos_token': '<EOS>'}
|
181 |
+
num_added_toks = tokenizer_decoder.add_special_tokens(special_tokens_dict)
|
182 |
+
print('We have added', num_added_toks, 'tokens to GPT2')
|
183 |
+
model_decoder.resize_token_embeddings(len(tokenizer_decoder)) # Notice: resize_token_embeddings expect to receive the full size of the new vocabulary, i.e. the length of the tokenizer.
|
184 |
+
assert tokenizer_decoder.pad_token == '<PAD>'
|
185 |
+
|
186 |
+
|
187 |
+
# Evaluation
|
188 |
+
model_vae = VAE(model_encoder, model_decoder, tokenizer_encoder, tokenizer_decoder, SimpleNamespace(**{'latent_size': latent_size, 'device':'cuda'}))
|
189 |
+
model_vae.load_state_dict(checkpoint['model_state_dict'])
|
190 |
+
print("Pre-trained Optimus is successfully loaded")
|
191 |
+
model_vae.to('cuda').to(torch.bfloat16)
|
192 |
+
model_vae = torch.compile(model_vae)
|
193 |
+
|
194 |
+
l = latent_code_from_text('A photo of a mountain.')[0]
|
195 |
+
t = text_from_latent_code(l)
|
196 |
+
print(t, l, l.shape)
|
197 |
+
################################################
|
198 |
|
199 |
import gradio as gr
|
200 |
import numpy as np
|
|
|
205 |
import random
|
206 |
import time
|
207 |
|
208 |
+
|
209 |
dtype = torch.bfloat16
|
210 |
torch.set_grad_enabled(False)
|
211 |
|
|
|
221 |
def generate(prompt, in_embs=None,):
|
222 |
if prompt != '':
|
223 |
print(prompt)
|
224 |
+
in_embs = in_embs / in_embs.abs().max() * .6 if in_embs != None else None
|
225 |
+
in_embs = 1 * in_embs.to('cuda') + 1 * latent_code_from_text(prompt)[0] if in_embs != None else latent_code_from_text(prompt)[0]
|
226 |
else:
|
227 |
print('From embeds.')
|
228 |
+
in_embs = in_embs / in_embs.abs().max() * .6
|
229 |
+
in_embs = in_embs.to('cuda').to(torch.bfloat16)
|
230 |
+
plt.close('all')
|
231 |
+
plt.hist(np.array(in_embs.detach().to('cpu').to(torch.float)).flatten(), bins=5)
|
232 |
+
plt.savefig('real_im_emb_plot.jpg')
|
233 |
+
|
234 |
+
|
235 |
+
text = text_from_latent_code(in_embs).replace('<unk> ', '')
|
236 |
+
in_embs = latent_code_from_text(text)[0]
|
237 |
+
print(text)
|
238 |
return text, in_embs.to('cpu')
|
239 |
|
240 |
|
|
|
251 |
if len(calibrate_prompts) > 0:
|
252 |
print('######### Calibrating with sample prompts #########')
|
253 |
prompt = calibrate_prompts.pop(0)
|
|
|
254 |
text, img_embs = generate(prompt)
|
255 |
embs += img_embs
|
256 |
print(len(embs))
|
|
|
261 |
|
262 |
# handle case where every instance of calibration prompts is 'Neither' or 'Like' or 'Dislike'
|
263 |
if len(list(set(ys))) <= 1:
|
264 |
+
embs.append(.01*torch.randn(latent_size))
|
265 |
+
embs.append(.01*torch.randn(latent_size))
|
266 |
ys.append(0)
|
267 |
ys.append(1)
|
268 |
if len(list(ys)) < 10:
|
269 |
+
embs += [.01*torch.randn(latent_size)] * 3
|
270 |
ys += [0] * 3
|
271 |
|
272 |
pos_indices = [i for i in range(len(embs)) if ys[i] == 1]
|
|
|
276 |
random.shuffle(pos_indices)
|
277 |
random.shuffle(neg_indices)
|
278 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
279 |
|
280 |
if len(neg_indices) > 25:
|
281 |
neg_indices = neg_indices[1:]
|
|
|
290 |
indices = list(range(len(embs)))
|
291 |
|
292 |
# also add the latest 0 and the latest 1
|
293 |
+
#has_0 = False
|
294 |
+
#has_1 = False
|
295 |
+
#for i in reversed(range(len(ys))):
|
296 |
+
# if ys[i] == 0 and has_0 == False:
|
297 |
+
# indices.append(i)
|
298 |
+
# has_0 = True
|
299 |
+
# elif ys[i] == 1 and has_1 == False:
|
300 |
+
# indices.append(i)
|
301 |
+
# has_1 = True
|
302 |
+
# if has_0 and has_1:
|
303 |
+
# break
|
304 |
|
305 |
# we may have just encountered a rare multi-threading diffusers issue (https://github.com/huggingface/diffusers/issues/5749);
|
306 |
# this ends up adding a rating but losing an embedding, it seems.
|
|
|
317 |
print('Gathering coefficients')
|
318 |
lin_class = SVC(max_iter=50000, kernel='linear', class_weight='balanced', C=.1).fit(feature_embs, chosen_y)
|
319 |
coef_ = torch.tensor(lin_class.coef_, dtype=torch.double)
|
|
|
320 |
print(coef_.shape, 'COEF')
|
321 |
print('Gathered')
|
322 |
|
checkpoint-31250/checkpoint-decoder-31250/pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 578805986
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:956e4d5b697320e6edce57414e379130230773a06073ac61e234148a8b4bbf5d
|
3 |
size 578805986
|
checkpoint-31250/checkpoint-decoder-31250/training_decoder_args.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2d81aab70fe9efffb1a6897b867bc45772a53476b746b8ab650150d7c7cd22a7
|
3 |
+
size 2337
|
checkpoint-31250/checkpoint-encoder-31250/pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 438007669
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:12c72c37c42dc4b47d60e1f2cde70225c777927b52aaed16c21f75213eedf11a
|
3 |
size 438007669
|
checkpoint-31250/checkpoint-encoder-31250/training_encoder_args.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2d81aab70fe9efffb1a6897b867bc45772a53476b746b8ab650150d7c7cd22a7
|
3 |
+
size 2337
|
checkpoint-31250/checkpoint-full-31250/training.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:78f8d855caf0b82d2912afd262a166d8588c500b0b0576d00cf4910834215627
|
3 |
+
size 2949730415
|
real_im_emb_plot.jpg
ADDED