import requests import torch from PIL import Image import gradio as gr from transformers import AutoModelForCausalLM, AutoProcessor # Load model and processor model_id_or_path = "rhymes-ai/Aria" model = AutoModelForCausalLM.from_pretrained(model_id_or_path, device_map="auto", torch_dtype=torch.bfloat16, trust_remote_code=True) processor = AutoProcessor.from_pretrained(model_id_or_path, trust_remote_code=True) # Function to process the input and generate text def generate_response(image): # Convert the input image to PIL format (if necessary) if isinstance(image, str): image = Image.open(requests.get(image, stream=True).raw) # Prepare messages for the model messages = [ { "role": "user", "content": [ {"text": None, "type": "image"}, {"text": "what is the image?", "type": "text"}, ], } ] text = processor.apply_chat_template(messages, add_generation_prompt=True) inputs = processor(text=text, images=image, return_tensors="pt") # Move pixel values to the correct dtype inputs["pixel_values"] = inputs["pixel_values"].to(model.dtype) inputs = {k: v.to(model.device) for k, v in inputs.items()} # Generate response with torch.inference_mode(), torch.cuda.amp.autocast(dtype=torch.bfloat16): output = model.generate( **inputs, max_new_tokens=500, stop_strings=["<|im_end|>"], tokenizer=processor.tokenizer, do_sample=True, temperature=0.9, ) output_ids = output[0][inputs["input_ids"].shape[1]:] result = processor.decode(output_ids, skip_special_tokens=True) return result # Gradio interface iface = gr.Interface( fn=generate_response, inputs=gr.inputs.Image(type="filepath"), outputs="text", title="Image-to-Text Model", description="Upload an image, and the model will describe it.", ) # Launch the app iface.launch()