RockeyCoss
add code files”
51f6859
raw
history blame contribute delete
No virus
19.5 kB
# Copyright (c) OpenMMLab. All rights reserved.
import copy
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import Conv2d, build_plugin_layer, caffe2_xavier_init
from mmcv.cnn.bricks.transformer import (build_positional_encoding,
build_transformer_layer_sequence)
from mmcv.ops import point_sample
from mmcv.runner import ModuleList
from mmdet.core import build_assigner, build_sampler, reduce_mean
from mmdet.models.utils import get_uncertain_point_coords_with_randomness
from ..builder import HEADS, build_loss
from .anchor_free_head import AnchorFreeHead
from .maskformer_head import MaskFormerHead
@HEADS.register_module()
class Mask2FormerHead(MaskFormerHead):
"""Implements the Mask2Former head.
See `Masked-attention Mask Transformer for Universal Image
Segmentation <https://arxiv.org/pdf/2112.01527>`_ for details.
Args:
in_channels (list[int]): Number of channels in the input feature map.
feat_channels (int): Number of channels for features.
out_channels (int): Number of channels for output.
num_things_classes (int): Number of things.
num_stuff_classes (int): Number of stuff.
num_queries (int): Number of query in Transformer decoder.
pixel_decoder (:obj:`mmcv.ConfigDict` | dict): Config for pixel
decoder. Defaults to None.
enforce_decoder_input_project (bool, optional): Whether to add
a layer to change the embed_dim of tranformer encoder in
pixel decoder to the embed_dim of transformer decoder.
Defaults to False.
transformer_decoder (:obj:`mmcv.ConfigDict` | dict): Config for
transformer decoder. Defaults to None.
positional_encoding (:obj:`mmcv.ConfigDict` | dict): Config for
transformer decoder position encoding. Defaults to None.
loss_cls (:obj:`mmcv.ConfigDict` | dict): Config of the classification
loss. Defaults to None.
loss_mask (:obj:`mmcv.ConfigDict` | dict): Config of the mask loss.
Defaults to None.
loss_dice (:obj:`mmcv.ConfigDict` | dict): Config of the dice loss.
Defaults to None.
train_cfg (:obj:`mmcv.ConfigDict` | dict): Training config of
Mask2Former head.
test_cfg (:obj:`mmcv.ConfigDict` | dict): Testing config of
Mask2Former head.
init_cfg (dict or list[dict], optional): Initialization config dict.
Defaults to None.
"""
def __init__(self,
in_channels,
feat_channels,
out_channels,
num_things_classes=80,
num_stuff_classes=53,
num_queries=100,
num_transformer_feat_level=3,
pixel_decoder=None,
enforce_decoder_input_project=False,
transformer_decoder=None,
positional_encoding=None,
loss_cls=None,
loss_mask=None,
loss_dice=None,
train_cfg=None,
test_cfg=None,
init_cfg=None,
**kwargs):
super(AnchorFreeHead, self).__init__(init_cfg)
self.num_things_classes = num_things_classes
self.num_stuff_classes = num_stuff_classes
self.num_classes = self.num_things_classes + self.num_stuff_classes
self.num_queries = num_queries
self.num_transformer_feat_level = num_transformer_feat_level
self.num_heads = transformer_decoder.transformerlayers.\
attn_cfgs.num_heads
self.num_transformer_decoder_layers = transformer_decoder.num_layers
assert pixel_decoder.encoder.transformerlayers.\
attn_cfgs.num_levels == num_transformer_feat_level
pixel_decoder_ = copy.deepcopy(pixel_decoder)
pixel_decoder_.update(
in_channels=in_channels,
feat_channels=feat_channels,
out_channels=out_channels)
self.pixel_decoder = build_plugin_layer(pixel_decoder_)[1]
self.transformer_decoder = build_transformer_layer_sequence(
transformer_decoder)
self.decoder_embed_dims = self.transformer_decoder.embed_dims
self.decoder_input_projs = ModuleList()
# from low resolution to high resolution
for _ in range(num_transformer_feat_level):
if (self.decoder_embed_dims != feat_channels
or enforce_decoder_input_project):
self.decoder_input_projs.append(
Conv2d(
feat_channels, self.decoder_embed_dims, kernel_size=1))
else:
self.decoder_input_projs.append(nn.Identity())
self.decoder_positional_encoding = build_positional_encoding(
positional_encoding)
self.query_embed = nn.Embedding(self.num_queries, feat_channels)
self.query_feat = nn.Embedding(self.num_queries, feat_channels)
# from low resolution to high resolution
self.level_embed = nn.Embedding(self.num_transformer_feat_level,
feat_channels)
self.cls_embed = nn.Linear(feat_channels, self.num_classes + 1)
self.mask_embed = nn.Sequential(
nn.Linear(feat_channels, feat_channels), nn.ReLU(inplace=True),
nn.Linear(feat_channels, feat_channels), nn.ReLU(inplace=True),
nn.Linear(feat_channels, out_channels))
self.test_cfg = test_cfg
self.train_cfg = train_cfg
if train_cfg:
self.assigner = build_assigner(self.train_cfg.assigner)
self.sampler = build_sampler(self.train_cfg.sampler, context=self)
self.num_points = self.train_cfg.get('num_points', 12544)
self.oversample_ratio = self.train_cfg.get('oversample_ratio', 3.0)
self.importance_sample_ratio = self.train_cfg.get(
'importance_sample_ratio', 0.75)
self.class_weight = loss_cls.class_weight
self.loss_cls = build_loss(loss_cls)
self.loss_mask = build_loss(loss_mask)
self.loss_dice = build_loss(loss_dice)
def init_weights(self):
for m in self.decoder_input_projs:
if isinstance(m, Conv2d):
caffe2_xavier_init(m, bias=0)
self.pixel_decoder.init_weights()
for p in self.transformer_decoder.parameters():
if p.dim() > 1:
nn.init.xavier_normal_(p)
def _get_target_single(self, cls_score, mask_pred, gt_labels, gt_masks,
img_metas):
"""Compute classification and mask targets for one image.
Args:
cls_score (Tensor): Mask score logits from a single decoder layer
for one image. Shape (num_queries, cls_out_channels).
mask_pred (Tensor): Mask logits for a single decoder layer for one
image. Shape (num_queries, h, w).
gt_labels (Tensor): Ground truth class indices for one image with
shape (num_gts, ).
gt_masks (Tensor): Ground truth mask for each image, each with
shape (num_gts, h, w).
img_metas (dict): Image informtation.
Returns:
tuple[Tensor]: A tuple containing the following for one image.
- labels (Tensor): Labels of each image. \
shape (num_queries, ).
- label_weights (Tensor): Label weights of each image. \
shape (num_queries, ).
- mask_targets (Tensor): Mask targets of each image. \
shape (num_queries, h, w).
- mask_weights (Tensor): Mask weights of each image. \
shape (num_queries, ).
- pos_inds (Tensor): Sampled positive indices for each \
image.
- neg_inds (Tensor): Sampled negative indices for each \
image.
"""
# sample points
num_queries = cls_score.shape[0]
num_gts = gt_labels.shape[0]
point_coords = torch.rand((1, self.num_points, 2),
device=cls_score.device)
# shape (num_queries, num_points)
mask_points_pred = point_sample(
mask_pred.unsqueeze(1), point_coords.repeat(num_queries, 1,
1)).squeeze(1)
# shape (num_gts, num_points)
gt_points_masks = point_sample(
gt_masks.unsqueeze(1).float(), point_coords.repeat(num_gts, 1,
1)).squeeze(1)
# assign and sample
assign_result = self.assigner.assign(cls_score, mask_points_pred,
gt_labels, gt_points_masks,
img_metas)
sampling_result = self.sampler.sample(assign_result, mask_pred,
gt_masks)
pos_inds = sampling_result.pos_inds
neg_inds = sampling_result.neg_inds
# label target
labels = gt_labels.new_full((self.num_queries, ),
self.num_classes,
dtype=torch.long)
labels[pos_inds] = gt_labels[sampling_result.pos_assigned_gt_inds]
label_weights = gt_labels.new_ones((self.num_queries, ))
# mask target
mask_targets = gt_masks[sampling_result.pos_assigned_gt_inds]
mask_weights = mask_pred.new_zeros((self.num_queries, ))
mask_weights[pos_inds] = 1.0
return (labels, label_weights, mask_targets, mask_weights, pos_inds,
neg_inds)
def loss_single(self, cls_scores, mask_preds, gt_labels_list,
gt_masks_list, img_metas):
"""Loss function for outputs from a single decoder layer.
Args:
cls_scores (Tensor): Mask score logits from a single decoder layer
for all images. Shape (batch_size, num_queries,
cls_out_channels). Note `cls_out_channels` should includes
background.
mask_preds (Tensor): Mask logits for a pixel decoder for all
images. Shape (batch_size, num_queries, h, w).
gt_labels_list (list[Tensor]): Ground truth class indices for each
image, each with shape (num_gts, ).
gt_masks_list (list[Tensor]): Ground truth mask for each image,
each with shape (num_gts, h, w).
img_metas (list[dict]): List of image meta information.
Returns:
tuple[Tensor]: Loss components for outputs from a single \
decoder layer.
"""
num_imgs = cls_scores.size(0)
cls_scores_list = [cls_scores[i] for i in range(num_imgs)]
mask_preds_list = [mask_preds[i] for i in range(num_imgs)]
(labels_list, label_weights_list, mask_targets_list, mask_weights_list,
num_total_pos,
num_total_neg) = self.get_targets(cls_scores_list, mask_preds_list,
gt_labels_list, gt_masks_list,
img_metas)
# shape (batch_size, num_queries)
labels = torch.stack(labels_list, dim=0)
# shape (batch_size, num_queries)
label_weights = torch.stack(label_weights_list, dim=0)
# shape (num_total_gts, h, w)
mask_targets = torch.cat(mask_targets_list, dim=0)
# shape (batch_size, num_queries)
mask_weights = torch.stack(mask_weights_list, dim=0)
# classfication loss
# shape (batch_size * num_queries, )
cls_scores = cls_scores.flatten(0, 1)
labels = labels.flatten(0, 1)
label_weights = label_weights.flatten(0, 1)
class_weight = cls_scores.new_tensor(self.class_weight)
loss_cls = self.loss_cls(
cls_scores,
labels,
label_weights,
avg_factor=class_weight[labels].sum())
num_total_masks = reduce_mean(cls_scores.new_tensor([num_total_pos]))
num_total_masks = max(num_total_masks, 1)
# extract positive ones
# shape (batch_size, num_queries, h, w) -> (num_total_gts, h, w)
mask_preds = mask_preds[mask_weights > 0]
if mask_targets.shape[0] == 0:
# zero match
loss_dice = mask_preds.sum()
loss_mask = mask_preds.sum()
return loss_cls, loss_mask, loss_dice
with torch.no_grad():
points_coords = get_uncertain_point_coords_with_randomness(
mask_preds.unsqueeze(1), None, self.num_points,
self.oversample_ratio, self.importance_sample_ratio)
# shape (num_total_gts, h, w) -> (num_total_gts, num_points)
mask_point_targets = point_sample(
mask_targets.unsqueeze(1).float(), points_coords).squeeze(1)
# shape (num_queries, h, w) -> (num_queries, num_points)
mask_point_preds = point_sample(
mask_preds.unsqueeze(1), points_coords).squeeze(1)
# dice loss
loss_dice = self.loss_dice(
mask_point_preds, mask_point_targets, avg_factor=num_total_masks)
# mask loss
# shape (num_queries, num_points) -> (num_queries * num_points, )
mask_point_preds = mask_point_preds.reshape(-1)
# shape (num_total_gts, num_points) -> (num_total_gts * num_points, )
mask_point_targets = mask_point_targets.reshape(-1)
loss_mask = self.loss_mask(
mask_point_preds,
mask_point_targets,
avg_factor=num_total_masks * self.num_points)
return loss_cls, loss_mask, loss_dice
def forward_head(self, decoder_out, mask_feature, attn_mask_target_size):
"""Forward for head part which is called after every decoder layer.
Args:
decoder_out (Tensor): in shape (num_queries, batch_size, c).
mask_feature (Tensor): in shape (batch_size, c, h, w).
attn_mask_target_size (tuple[int, int]): target attention
mask size.
Returns:
tuple: A tuple contain three elements.
- cls_pred (Tensor): Classification scores in shape \
(batch_size, num_queries, cls_out_channels). \
Note `cls_out_channels` should includes background.
- mask_pred (Tensor): Mask scores in shape \
(batch_size, num_queries,h, w).
- attn_mask (Tensor): Attention mask in shape \
(batch_size * num_heads, num_queries, h, w).
"""
decoder_out = self.transformer_decoder.post_norm(decoder_out)
decoder_out = decoder_out.transpose(0, 1)
# shape (batch_size, num_queries, c)
cls_pred = self.cls_embed(decoder_out)
# shape (batch_size, num_queries, c)
mask_embed = self.mask_embed(decoder_out)
# shape (batch_size, num_queries, h, w)
mask_pred = torch.einsum('bqc,bchw->bqhw', mask_embed, mask_feature)
attn_mask = F.interpolate(
mask_pred,
attn_mask_target_size,
mode='bilinear',
align_corners=False)
# shape (batch_size, num_queries, h, w) ->
# (batch_size * num_head, num_queries, h*w)
attn_mask = attn_mask.flatten(2).unsqueeze(1).repeat(
(1, self.num_heads, 1, 1)).flatten(0, 1)
attn_mask = attn_mask.sigmoid() < 0.5
attn_mask = attn_mask.detach()
return cls_pred, mask_pred, attn_mask
def forward(self, feats, img_metas):
"""Forward function.
Args:
feats (list[Tensor]): Multi scale Features from the
upstream network, each is a 4D-tensor.
img_metas (list[dict]): List of image information.
Returns:
tuple: A tuple contains two elements.
- cls_pred_list (list[Tensor)]: Classification logits \
for each decoder layer. Each is a 3D-tensor with shape \
(batch_size, num_queries, cls_out_channels). \
Note `cls_out_channels` should includes background.
- mask_pred_list (list[Tensor]): Mask logits for each \
decoder layer. Each with shape (batch_size, num_queries, \
h, w).
"""
batch_size = len(img_metas)
mask_features, multi_scale_memorys = self.pixel_decoder(feats)
# multi_scale_memorys (from low resolution to high resolution)
decoder_inputs = []
decoder_positional_encodings = []
for i in range(self.num_transformer_feat_level):
decoder_input = self.decoder_input_projs[i](multi_scale_memorys[i])
# shape (batch_size, c, h, w) -> (h*w, batch_size, c)
decoder_input = decoder_input.flatten(2).permute(2, 0, 1)
level_embed = self.level_embed.weight[i].view(1, 1, -1)
decoder_input = decoder_input + level_embed
# shape (batch_size, c, h, w) -> (h*w, batch_size, c)
mask = decoder_input.new_zeros(
(batch_size, ) + multi_scale_memorys[i].shape[-2:],
dtype=torch.bool)
decoder_positional_encoding = self.decoder_positional_encoding(
mask)
decoder_positional_encoding = decoder_positional_encoding.flatten(
2).permute(2, 0, 1)
decoder_inputs.append(decoder_input)
decoder_positional_encodings.append(decoder_positional_encoding)
# shape (num_queries, c) -> (num_queries, batch_size, c)
query_feat = self.query_feat.weight.unsqueeze(1).repeat(
(1, batch_size, 1))
query_embed = self.query_embed.weight.unsqueeze(1).repeat(
(1, batch_size, 1))
cls_pred_list = []
mask_pred_list = []
cls_pred, mask_pred, attn_mask = self.forward_head(
query_feat, mask_features, multi_scale_memorys[0].shape[-2:])
cls_pred_list.append(cls_pred)
mask_pred_list.append(mask_pred)
for i in range(self.num_transformer_decoder_layers):
level_idx = i % self.num_transformer_feat_level
# if a mask is all True(all background), then set it all False.
attn_mask[torch.where(
attn_mask.sum(-1) == attn_mask.shape[-1])] = False
# cross_attn + self_attn
layer = self.transformer_decoder.layers[i]
attn_masks = [attn_mask, None]
query_feat = layer(
query=query_feat,
key=decoder_inputs[level_idx],
value=decoder_inputs[level_idx],
query_pos=query_embed,
key_pos=decoder_positional_encodings[level_idx],
attn_masks=attn_masks,
query_key_padding_mask=None,
# here we do not apply masking on padded region
key_padding_mask=None)
cls_pred, mask_pred, attn_mask = self.forward_head(
query_feat, mask_features, multi_scale_memorys[
(i + 1) % self.num_transformer_feat_level].shape[-2:])
cls_pred_list.append(cls_pred)
mask_pred_list.append(mask_pred)
return cls_pred_list, mask_pred_list