Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) Facebook, Inc. and its affiliates. | |
import unittest | |
import torch | |
from torch import nn | |
from detectron2.utils.analysis import find_unused_parameters, flop_count_operators, parameter_count | |
from detectron2.utils.testing import get_model_no_weights | |
class RetinaNetTest(unittest.TestCase): | |
def setUp(self): | |
self.model = get_model_no_weights("COCO-Detection/retinanet_R_50_FPN_1x.yaml") | |
def test_flop(self): | |
# RetinaNet supports flop-counting with random inputs | |
inputs = [{"image": torch.rand(3, 800, 800), "test_unused": "abcd"}] | |
res = flop_count_operators(self.model, inputs) | |
self.assertEqual(int(res["conv"]), 146) # 146B flops | |
def test_param_count(self): | |
res = parameter_count(self.model) | |
self.assertEqual(res[""], 37915572) | |
self.assertEqual(res["backbone"], 31452352) | |
class FasterRCNNTest(unittest.TestCase): | |
def setUp(self): | |
self.model = get_model_no_weights("COCO-Detection/faster_rcnn_R_50_FPN_1x.yaml") | |
def test_flop(self): | |
# Faster R-CNN supports flop-counting with random inputs | |
inputs = [{"image": torch.rand(3, 800, 800)}] | |
res = flop_count_operators(self.model, inputs) | |
# This only checks flops for backbone & proposal generator | |
# Flops for box head is not conv, and depends on #proposals, which is | |
# almost 0 for random inputs. | |
self.assertEqual(int(res["conv"]), 117) | |
def test_flop_with_output_shape(self): | |
inputs = [{"image": torch.rand(3, 800, 800), "height": 700, "width": 700}] | |
res = flop_count_operators(self.model, inputs) | |
self.assertEqual(int(res["conv"]), 117) | |
def test_param_count(self): | |
res = parameter_count(self.model) | |
self.assertEqual(res[""], 41699936) | |
self.assertEqual(res["backbone"], 26799296) | |
class MaskRCNNTest(unittest.TestCase): | |
def setUp(self): | |
self.model = get_model_no_weights("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml") | |
def test_flop(self): | |
inputs1 = [{"image": torch.rand(3, 800, 800)}] | |
inputs2 = [{"image": torch.rand(3, 800, 800), "height": 700, "width": 700}] | |
for inputs in [inputs1, inputs2]: | |
res = flop_count_operators(self.model, inputs) | |
# The mask head could have extra conv flops, so total >= 117 | |
self.assertGreaterEqual(int(res["conv"]), 117) | |
class UnusedParamTest(unittest.TestCase): | |
def test_unused(self): | |
class TestMod(nn.Module): | |
def __init__(self): | |
super().__init__() | |
self.fc1 = nn.Linear(10, 10) | |
self.t = nn.Linear(10, 10) | |
def forward(self, x): | |
return self.fc1(x).mean() | |
m = TestMod() | |
ret = find_unused_parameters(m, torch.randn(10, 10)) | |
self.assertEqual(set(ret), {"t.weight", "t.bias"}) | |