File size: 6,123 Bytes
61c2d32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import os
import sys
import time
from pathlib import Path

import gradio as gr
import torch
from PIL import Image

from utils_stableviton import get_mask_location

PROJECT_ROOT = Path(__file__).absolute().parents[1].absolute()
sys.path.insert(0, str(PROJECT_ROOT))

from preprocess.detectron2.projects.DensePose.apply_net_gradio import DensePose4Gradio
from preprocess.humanparsing.run_parsing import Parsing
from preprocess.openpose.run_openpose import OpenPose

os.environ['GRADIO_TEMP_DIR'] = './tmp'  # TODO: turn off when final upload


openpose_model_hd = OpenPose(0)
parsing_model_hd = Parsing(0)
densepose_model_hd = DensePose4Gradio(
    cfg='preprocess/detectron2/projects/DensePose/configs/densepose_rcnn_R_50_FPN_s1x.yaml',
    model='https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_50_FPN_s1x/165712039/model_final_162be9.pkl',
)
stable_viton_model_hd = ...  # TODO: write down stable viton model

category_dict = ['upperbody', 'lowerbody', 'dress']
category_dict_utils = ['upper_body', 'lower_body', 'dresses']

# import spaces  # TODO: turn on when final upload

# @spaces.GPU  # TODO: turn on when final upload


def process_hd(vton_img, garm_img, n_samples, n_steps, guidance_scale, seed):
    model_type = 'hd'
    category = 0  # 0:upperbody; 1:lowerbody; 2:dress

    with torch.no_grad():
        openpose_model_hd.preprocessor.body_estimation.model.to('cuda')

        stt = time.time()
        print('load images... ', end='')
        garm_img = Image.open(garm_img).resize((768, 1024))
        vton_img = Image.open(vton_img).resize((768, 1024))
        print('%.2fs' % (time.time() - stt))

        stt = time.time()
        print('get agnostic map... ', end='')
        keypoints = openpose_model_hd(vton_img.resize((384, 512)))
        model_parse, _ = parsing_model_hd(vton_img.resize((384, 512)))
        mask, mask_gray = get_mask_location(model_type, category_dict_utils[category], model_parse, keypoints)
        mask = mask.resize((768, 1024), Image.NEAREST)
        mask_gray = mask_gray.resize((768, 1024), Image.NEAREST)
        masked_vton_img = Image.composite(mask_gray, vton_img, mask)  # agnostic map
        print('%.2fs' % (time.time() - stt))

        stt = time.time()
        print('get densepose... ', end='')
        vton_img = vton_img.resize((768, 1024))  # size for densepose
        densepose = densepose_model_hd.execute(vton_img)  # densepose
        print('%.2fs' % (time.time() - stt))

        # # stable viton here
        # images = stable_viton_model_hd(
        #     vton_img,
        #     garm_img,
        #     masked_vton_img,
        #     densepose,
        #     n_samples,
        #     n_steps,
        #     guidance_scale,
        #     seed
        # )

    # return images


example_path = os.path.join(os.path.dirname(__file__), 'examples')
model_hd = os.path.join(example_path, 'model/model_1.png')
garment_hd = os.path.join(example_path, 'garment/00055_00.jpg')

with gr.Blocks(css='style.css') as demo:
    gr.HTML(
        """
        <div style="display: flex; justify-content: center; align-items: center; text-align: center;">
            <div>
                <h1>StableVITON Demo πŸ‘•πŸ‘”πŸ‘—</h1>
                <div style="display: flex; justify-content: center; align-items: center; text-align: center;">
                    <a href='https://arxiv.org/abs/2312.01725'>
                        <img src="https://img.shields.io/badge/arXiv-2312.01725-red">
                    </a>
                    &nbsp;
                    <a href='https://rlawjdghek.github.io/StableVITON/'>
                        <img src='https://img.shields.io/badge/page-github.io-blue.svg'>
                    </a>
                    &nbsp;
                    <a href='https://github.com/rlawjdghek/StableVITON'>
                        <img src='https://img.shields.io/github/stars/rlawjdghek/StableVITON'>
                    </a>
                    &nbsp;
                    <a href='https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode'>
                        <img src='https://img.shields.io/badge/license-CC_BY--NC--SA_4.0-lightgrey'>
                    </a>
                </div>
            </div>
        </div>
        """
    )
    with gr.Row():
        gr.Markdown("## Experience virtual try-on with your own images!")
    with gr.Row():
        with gr.Column():
            vton_img = gr.Image(label="Model", type="filepath", height=384, value=model_hd)
            example = gr.Examples(
                inputs=vton_img,
                examples_per_page=14,
                examples=[
                    os.path.join(example_path, 'model/model_1.png'),  # TODO more our models
                    os.path.join(example_path, 'model/model_2.png'),
                    os.path.join(example_path, 'model/model_3.png'),
                ])
        with gr.Column():
            garm_img = gr.Image(label="Garment", type="filepath", height=384, value=garment_hd)
            example = gr.Examples(
                inputs=garm_img,
                examples_per_page=14,
                examples=[
                    os.path.join(example_path, 'garment/00055_00.jpg'),
                    os.path.join(example_path, 'garment/00126_00.jpg'),
                    os.path.join(example_path, 'garment/00151_00.jpg'),
                ])
        with gr.Column():
            result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery", preview=True, scale=1)
    with gr.Column():
        run_button = gr.Button(value="Run")
        # TODO: change default values (important!)
        n_samples = gr.Slider(label="Images", minimum=1, maximum=4, value=1, step=1)
        n_steps = gr.Slider(label="Steps", minimum=20, maximum=40, value=20, step=1)
        guidance_scale = gr.Slider(label="Guidance scale", minimum=1.0, maximum=5.0, value=2.0, step=0.1)
        seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, value=-1)

    ips = [vton_img, garm_img, n_samples, n_steps, guidance_scale, seed]
    run_button.click(fn=process_hd, inputs=ips, outputs=[result_gallery])

demo.launch()