File size: 6,568 Bytes
a9a0ec2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
#!/usr/bin/env python
# Copyright (c) Facebook, Inc. and its affiliates.
"""
A script to benchmark builtin models.

Note: this script has an extra dependency of psutil.
"""

import itertools
import logging

import psutil
import torch
import tqdm

from detectron2.checkpoint import DetectionCheckpointer
from detectron2.config import get_cfg, instantiate, LazyConfig
from detectron2.data import (
    build_detection_test_loader,
    build_detection_train_loader,
    DatasetFromList,
)
from detectron2.data.benchmark import DataLoaderBenchmark
from detectron2.engine import (
    AMPTrainer,
    default_argument_parser,
    hooks,
    launch,
    SimpleTrainer,
)
from detectron2.modeling import build_model
from detectron2.solver import build_optimizer
from detectron2.utils import comm
from detectron2.utils.collect_env import collect_env_info
from detectron2.utils.events import CommonMetricPrinter
from detectron2.utils.logger import setup_logger
from fvcore.common.timer import Timer
from torch.nn.parallel import DistributedDataParallel

logger = logging.getLogger("detectron2")


def setup(args):
    if args.config_file.endswith(".yaml"):
        cfg = get_cfg()
        cfg.merge_from_file(args.config_file)
        cfg.SOLVER.BASE_LR = 0.001  # Avoid NaNs. Not useful in this script anyway.
        cfg.merge_from_list(args.opts)
        cfg.freeze()
    else:
        cfg = LazyConfig.load(args.config_file)
        cfg = LazyConfig.apply_overrides(cfg, args.opts)
    setup_logger(distributed_rank=comm.get_rank())
    return cfg


def create_data_benchmark(cfg, args):
    if args.config_file.endswith(".py"):
        dl_cfg = cfg.dataloader.train
        dl_cfg._target_ = DataLoaderBenchmark
        return instantiate(dl_cfg)
    else:
        kwargs = build_detection_train_loader.from_config(cfg)
        kwargs.pop("aspect_ratio_grouping", None)
        kwargs["_target_"] = DataLoaderBenchmark
        return instantiate(kwargs)


def RAM_msg():
    vram = psutil.virtual_memory()
    return "RAM Usage: {:.2f}/{:.2f} GB".format(
        (vram.total - vram.available) / 1024**3, vram.total / 1024**3
    )


def benchmark_data(args):
    cfg = setup(args)
    logger.info("After spawning " + RAM_msg())

    benchmark = create_data_benchmark(cfg, args)
    benchmark.benchmark_distributed(250, 10)
    # test for a few more rounds
    for k in range(10):
        logger.info(f"Iteration {k} " + RAM_msg())
        benchmark.benchmark_distributed(250, 1)


def benchmark_data_advanced(args):
    # benchmark dataloader with more details to help analyze performance bottleneck
    cfg = setup(args)
    benchmark = create_data_benchmark(cfg, args)

    if comm.get_rank() == 0:
        benchmark.benchmark_dataset(100)
        benchmark.benchmark_mapper(100)
        benchmark.benchmark_workers(100, warmup=10)
        benchmark.benchmark_IPC(100, warmup=10)
    if comm.get_world_size() > 1:
        benchmark.benchmark_distributed(100)
        logger.info("Rerun ...")
        benchmark.benchmark_distributed(100)


def benchmark_train(args):
    cfg = setup(args)
    model = build_model(cfg)
    logger.info("Model:\n{}".format(model))
    if comm.get_world_size() > 1:
        model = DistributedDataParallel(
            model, device_ids=[comm.get_local_rank()], broadcast_buffers=False
        )
    optimizer = build_optimizer(cfg, model)
    checkpointer = DetectionCheckpointer(model, optimizer=optimizer)
    checkpointer.load(cfg.MODEL.WEIGHTS)

    cfg.defrost()
    cfg.DATALOADER.NUM_WORKERS = 2
    data_loader = build_detection_train_loader(cfg)
    dummy_data = list(itertools.islice(data_loader, 100))

    def f():
        data = DatasetFromList(dummy_data, copy=False, serialize=False)
        while True:
            yield from data

    max_iter = 400
    trainer = (AMPTrainer if cfg.SOLVER.AMP.ENABLED else SimpleTrainer)(
        model, f(), optimizer
    )
    trainer.register_hooks(
        [
            hooks.IterationTimer(),
            hooks.PeriodicWriter([CommonMetricPrinter(max_iter)]),
            hooks.TorchProfiler(
                lambda trainer: trainer.iter == max_iter - 1,
                cfg.OUTPUT_DIR,
                save_tensorboard=True,
            ),
        ]
    )
    trainer.train(1, max_iter)


@torch.no_grad()
def benchmark_eval(args):
    cfg = setup(args)
    if args.config_file.endswith(".yaml"):
        model = build_model(cfg)
        DetectionCheckpointer(model).load(cfg.MODEL.WEIGHTS)

        cfg.defrost()
        cfg.DATALOADER.NUM_WORKERS = 0
        data_loader = build_detection_test_loader(cfg, cfg.DATASETS.TEST[0])
    else:
        model = instantiate(cfg.model)
        model.to(cfg.train.device)
        DetectionCheckpointer(model).load(cfg.train.init_checkpoint)

        cfg.dataloader.num_workers = 0
        data_loader = instantiate(cfg.dataloader.test)

    model.eval()
    logger.info("Model:\n{}".format(model))
    dummy_data = DatasetFromList(list(itertools.islice(data_loader, 100)), copy=False)

    def f():
        while True:
            yield from dummy_data

    for k in range(5):  # warmup
        model(dummy_data[k])

    max_iter = 300
    timer = Timer()
    with tqdm.tqdm(total=max_iter) as pbar:
        for idx, d in enumerate(f()):
            if idx == max_iter:
                break
            model(d)
            pbar.update()
    logger.info("{} iters in {} seconds.".format(max_iter, timer.seconds()))


def main() -> None:
    parser = default_argument_parser()
    parser.add_argument(
        "--task", choices=["train", "eval", "data", "data_advanced"], required=True
    )
    args = parser.parse_args()
    assert not args.eval_only

    logger.info("Environment info:\n" + collect_env_info())
    if "data" in args.task:
        print("Initial " + RAM_msg())
    if args.task == "data":
        f = benchmark_data
    if args.task == "data_advanced":
        f = benchmark_data_advanced
    elif args.task == "train":
        """
        Note: training speed may not be representative.
        The training cost of a R-CNN model varies with the content of the data
        and the quality of the model.
        """
        f = benchmark_train
    elif args.task == "eval":
        f = benchmark_eval
        # only benchmark single-GPU inference.
        assert args.num_gpus == 1 and args.num_machines == 1
    launch(
        f,
        args.num_gpus,
        args.num_machines,
        args.machine_rank,
        args.dist_url,
        args=(args,),
    )


if __name__ == "__main__":
    main()  # pragma: no cover