import pandas as pd import gradio as gr import hashlib, base64 import openai # querying OpenAI for generation from openAI_manager import initOpenAI, examples_to_prompt, genChatGPT, generateTestSentences # bias testing manager import mgr_bias_scoring as bt_mgr import mgr_sentences as smgr # error messages from error_messages import * # hashing def getHashForString(text): d=hashlib.md5(bytes(text, encoding='utf-8')).digest() d=base64.urlsafe_b64encode(d) return d.decode('utf-8') def getBiasName(gr1_lst, gr2_lst, att1_lst, att2_lst): full_spec = ''.join(gr1_lst)+''.join(gr2_lst)+''.join(att1_lst)+''.join(att2_lst) hash = getHashForString(full_spec) bias_name = f"{gr1_lst[0].replace(' ','-')}_{gr2_lst[0].replace(' ','-')}__{att1_lst[0].replace(' ','-')}_{att2_lst[0].replace(' ','-')}_{hash}" return bias_name def _generateOnline(bias_spec, progress, key, num2gen, isSaving=False): test_sentences = [] # Initiate with key try: models = initOpenAI(key) model_names = [m['id'] for m in models['data']] print(f"Model names: {model_names}") except openai.error.AuthenticationError as err: raise gr.Error(OPENAI_INIT_ERROR.replace("", str(err))) if "gpt-3.5-turbo" in model_names: print("Access to ChatGPT") if "gpt-4" in model_names: print("Access to GPT-4") model_name = "gpt-3.5-turbo" # Generate one example gen = genChatGPT(model_name, ["man","math"], 2, 5, [{"Keywords": ["sky","blue"], "Sentence": "the sky is blue"} ], temperature=0.8) print(f"Test gen: {gen}") # Generate all test sentences print(f"Bias spec dict: {bias_spec}") g1, g2, a1, a2 = bt_mgr.get_words(bias_spec) gens = generateTestSentences(model_name, g1+g2, a1+a2, num2gen, progress) print("--GENS--") print(gens) for gt, at, s in gens: test_sentences.append([s,gt,at]) # save the generations immediately print("Saving generations to HF DF...") save_df = pd.DataFrame(test_sentences, columns=["Test sentence",'Group term', "Attribute term"]) ## make the templates to save # 1. bias specification print(f"Bias spec dict: {bias_spec}") # 2. convert to templates save_df['Template'] = save_df.apply(bt_mgr.sentence_to_template, axis=1) print(f"Data with template: {save_df}") # 3. convert to pairs test_pairs_df = bt_mgr.convert2pairs(bias_spec, save_df) print(f"Test pairs cols: {list(test_pairs_df.columns)}") bias_name = getBiasName(g1, g2, a1, a2) save_df = save_df.rename(columns={'Group term':'org_grp_term', "Attribute term": 'att_term', "Test sentence":'sentence', "Template":"template"}) save_df['grp_term1'] = test_pairs_df['att_term_1'] save_df['grp_term2'] = test_pairs_df['att_term_2'] save_df['label_1'] = test_pairs_df['label_1'] save_df['label_2'] = test_pairs_df['label_2'] save_df['bias_spec'] = bias_name save_df['type'] = 'tool' save_df['gen_model'] = model_name if isSaving == True: print(f"Save cols: {list(save_df.columns)}") print(f"Save: {save_df.head(1)}") #smgr.saveSentences(save_df) #[["Group term","Attribute term","Test sentence"]]) num_sentences = len(test_sentences) print(f"Returned num sentences: {num_sentences}") return test_sentences def _getSavedSentences(bias_spec, progress, use_paper_sentences): test_sentences = [] print(f"Bias spec dict: {bias_spec}") g1, g2, a1, a2 = bt_mgr.get_words(bias_spec) for gi, g_term in enumerate(g1+g2): att_list = a1+a2 # match "-" and no space att_list_dash = [t.replace(' ','-') for t in att_list] att_list.extend(att_list_dash) att_list_nospace = [t.replace(' ','') for t in att_list] att_list.extend(att_list_nospace) att_list = list(set(att_list)) progress(gi/len(g1+g2), desc=f"{g_term}") _, sentence_df, _ = smgr.getSavedSentences(g_term) # only take from paper & gpt3.5 flt_gen_models = ["gpt-3.5","gpt-3.5-turbo"] print(f"Before filter: {sentence_df.shape[0]}") if use_paper_sentences == True: if 'type' in list(sentence_df.columns): sentence_df = sentence_df.query("type=='paper' and gen_model in @flt_gen_models") print(f"After filter: {sentence_df.shape[0]}") else: if 'type' in list(sentence_df.columns): # only use GPT-3.5 generations for now - todo: add settings option for this sentence_df = sentence_df.query("gen_model in @flt_gen_models") print(f"After filter: {sentence_df.shape[0]}") if sentence_df.shape[0] > 0: sentence_df = sentence_df[['org_grp_term','att_term','sentence']] sentence_df = sentence_df.rename(columns={'org_grp_term': "Group term", "att_term": "Attribute term", "sentence": "Test sentence"}) sel = sentence_df[sentence_df['Attribute term'].isin(att_list)].values if len(sel) > 0: for gt,at,s in sel: test_sentences.append([s,gt,at]) else: print("Test sentences empty!") #raise gr.Error(NO_SENTENCES_ERROR) return test_sentences