import gradio as gr
import pandas as pd
import numpy as np
import string
import re
import json
import random
import torch
import hashlib, base64
from tqdm import tqdm
from gradio.themes.base import Base
import openai
# error messages
from error_messages import *
tqdm().pandas()
# bias testing manager
import mgr_bias_scoring as bt_mgr
# managers for sentences and biases
import mgr_requests as rq_mgr
import mgr_biases as bmgr
# cookie manager
import mgr_cookies as cookie_mgr
use_paper_sentences = False
G_NUM_SENTENCES = 0
def getTermsFromGUI(group1, group2, att1, att2):
bias_spec = {
"social_groups": {
"group 1": [t.strip(" ") for t in group1.split(",") if len(t.strip(' '))>0],
"group 2": [t.strip(" ") for t in group2.split(",") if len(t.strip(' '))>0]},
"attributes": {
"attribute 1": [t.strip(" ") for t in att1.split(",") if len(t.strip(' '))>0],
"attribute 2": [t.strip(" ") for t in att2.split(",") if len(t.strip(' '))>0]}
}
return bias_spec
# Select from example datasets
def prefillBiasSpec(evt: gr.SelectData):
global use_paper_sentences
print(f"Selected {evt.value} at {evt.index} from {evt.target}")
#bias_filename = f"{evt.value[1]}.json"
bias_filename = f"{bmgr.bias2tag[evt.value]}.json"
print(f"Filename: {bias_filename}")
bias_spec = bmgr.loadPredefinedBiasSpec(bias_filename)
grp1_terms, grp2_terms = bmgr.getSocialGroupTerms(bias_spec)
att1_terms, att2_terms = bmgr.getAttributeTerms(bias_spec)
print(f"Grp 1: {grp1_terms}")
print(f"Grp 2: {grp2_terms}")
print(f"Att 1: {att1_terms}")
print(f"Att 2: {att2_terms}")
#use_paper_sentences = True
return (', '.join(grp1_terms[0:50]), ', '.join(grp2_terms[0:50]), ', '.join(att1_terms[0:50]), ', '.join(att2_terms[0:50]))
def updateErrorMsg(isError, text):
return gr.Markdown.update(visible=isError, value=text)
def generateSentences(gr1, gr2, att1, att2, openai_key, num_sent2gen, progress=gr.Progress()):
global use_paper_sentences, G_NUM_SENTENCES
print(f"GENERATE SENTENCES CLICKED!, requested sentence per attribute number: {num_sent2gen}")
# No error messages by default
err_update = updateErrorMsg(False, "")
bias_gen_states = [True, False]
online_gen_visible = True
info_msg_update = gr.Markdown.update(visible=False, value="")
test_sentences = []
bias_spec = getTermsFromGUI(gr1, gr2, att1, att2)
g1, g2, a1, a2 = bt_mgr.get_words(bias_spec)
total_att_terms = len(a1)+len(a2)
all_terms_len = len(g1)+len(g2)+len(a1)+len(a2)
print(f"Length of all the terms: {all_terms_len}")
if all_terms_len == 0:
print("No terms entered!")
err_update = updateErrorMsg(True, NO_TERMS_ENTERED_ERROR)
#raise gr.Error(NO_TERMS_ENTERED_ERROR)
else:
if len(openai_key) == 0:
print("Empty OpenAI key!!!")
err_update = updateErrorMsg(True, OPENAI_KEY_EMPTY)
elif len(openai_key) < 10:
print("Wrong length OpenAI key!!!")
err_update = updateErrorMsg(True, OPENAI_KEY_WRONG)
else:
progress(0, desc="ChatGPT generation...")
print(f"Using Online Generator LLM...")
test_sentences = rq_mgr._generateOnline(bias_spec, progress, openai_key, num_sent2gen, False)
#print(f"Test sentences: {test_sentences}")
num_sentences = len(test_sentences)
print(f"Returned num sentences: {num_sentences}")
G_NUM_SENTENCES = num_sentences
if G_NUM_SENTENCES == 0:
print("Test sentences empty!")
#raise gr.Error(NO_SENTENCES_ERROR)
err_update = updateErrorMsg(True, NO_SENTENCES_ERROR)
else:
# has all sentences, can bias test
bias_gen_states = [False, True]
online_gen_visible = False
info_msg = _genSentenceCoverMsg(test_sentences, total_att_terms, isGen=True)
info_msg_update = gr.Markdown.update(visible=True, value=info_msg)
cookie_mgr.saveOpenAIKey(openai_key)
print(f"Online gen visible: {not err_update['visible']}")
return (err_update, # err message if any
info_msg_update, # infor message about the number of sentences and coverage
gr.Row.update(visible=online_gen_visible), # online gen row
#gr.Slider.update(minimum=8, maximum=24, value=4), # slider generation
gr.Dropdown.update(visible=not online_gen_visible), # tested model selection dropdown
gr.Accordion.update(visible=not online_gen_visible, label=f"Test sentences ({len(test_sentences)})"), # accordion
gr.update(visible=True), # Row sentences
gr.DataFrame.update(value=test_sentences), #DataFrame test sentences
gr.update(visible=bias_gen_states[0]), # gen btn
gr.update(visible=bias_gen_states[1]) # bias btn
)
def useOnlineGen(value):
if value == True:
btn_label = "Generate New Sentences"
else:
btn_label = "Use Saved Sentences"
return (gr.update(visible=value), # OpenAI key TextBox
gr.update(value=btn_label), # Generate button
gr.update(visible=value) # Slider
)
# Interaction with top tabs
def moveStep1():
variants = ["primary","secondary","secondary"]
#inter = [True, False, False]
tabs = [True, False, False]
return (gr.update(variant=variants[0]),
gr.update(variant=variants[1]),
gr.update(variant=variants[2]),
gr.update(visible=tabs[0]),
gr.update(visible=tabs[1]),
gr.update(visible=tabs[2]))
def moveStep2():
variants = ["secondary","primary","secondary"]
#inter = [True, True, False]
tabs = [False, True, False]
return (gr.update(variant=variants[0]),
gr.update(variant=variants[1]),
gr.update(variant=variants[2]),
gr.update(visible=tabs[0]),
gr.update(visible=tabs[1]),
gr.update(visible=tabs[2]))
def moveStep3():
variants = ["secondary","secondary","primary"]
#inter = [True, True, False]
tabs = [False, False, True]
return (gr.update(variant=variants[0]),
gr.update(variant=variants[1]),
gr.update(variant=variants[2]),
gr.update(visible=tabs[0]),
gr.update(visible=tabs[1]),
gr.update(visible=tabs[2]))
def _genSentenceCoverMsg(test_sentences, total_att_terms, isGen=False):
att_cover_dict = {}
for att, grp, sent in test_sentences:
num = att_cover_dict.get(att, 0)
att_cover_dict[att] = num+1
att_by_count = dict(sorted(att_cover_dict.items(), key=lambda item: item[1]))
num_covered_atts = len(list(att_by_count.keys()))
lest_covered_att = list(att_by_count.keys())[0]
least_covered_count = att_by_count[lest_covered_att]
source_msg = "Found" if isGen==False else "Generated"
if num_covered_atts >= total_att_terms:
info_msg = f"**{source_msg} {len(test_sentences)} sentences covering all bias specification attributes. Please select model to test.**"
else:
info_msg = f"**{source_msg} {len(test_sentences)} sentences covering {num_covered_atts} of {total_att_terms} attributes. Please select model to test.**"
return info_msg
def retrieveSentences(gr1, gr2, att1, att2, progress=gr.Progress()):
global use_paper_sentences, G_NUM_SENTENCES
print("RETRIEVE SENTENCES CLICKED!")
variants = ["secondary","primary","secondary"]
inter = [True, True, False]
tabs = [True, False]
bias_gen_states = [True, False]
prog_vis = [True]
err_update = updateErrorMsg(False, "")
info_msg_update = gr.Markdown.update(visible=False, value="")
openai_gen_row_update = gr.Row.update(visible=True)
tested_model_dropdown_update = gr.Dropdown.update(visible=False)
test_sentences = []
bias_spec = getTermsFromGUI(gr1, gr2, att1, att2)
g1, g2, a1, a2 = bt_mgr.get_words(bias_spec)
total_att_terms = len(a1)+len(a2)
all_terms_len = len(g1)+len(g2)+len(a1)+len(a2)
print(f"Length of all the terms: {all_terms_len}")
if all_terms_len == 0:
print("No terms entered!")
err_update = updateErrorMsg(True, NO_TERMS_ENTERED_ERROR)
variants = ["primary","secondary","secondary"]
inter = [True, False, False]
tabs = [True, False]
prog_vis = [False]
#raise gr.Error(NO_TERMS_ENTERED_ERROR)
else:
tabs = [False, True]
progress(0, desc="Fetching saved sentences...")
test_sentences = rq_mgr._getSavedSentences(bias_spec, progress, use_paper_sentences)
#err_update, _, test_sentences = generateSentences(gr1, gr2, att1, att2, progress)
print(f"Type: {type(test_sentences)}")
num_sentences = len(test_sentences)
print(f"Returned num sentences: {num_sentences}")
err_update = updateErrorMsg(False, "")
G_NUM_SENTENCES = num_sentences
if G_NUM_SENTENCES == 0:
print("Test sentences empty!")
#raise gr.Error(NO_SENTENCES_ERROR)
err_update = updateErrorMsg(True, NO_SENTENCES_ERROR)
if len(test_sentences) > 0:
info_msg = _genSentenceCoverMsg(test_sentences, total_att_terms)
info_msg_update = gr.Markdown.update(visible=True, value=info_msg)
print(f"Got {len(test_sentences)}, allowing bias test...")
print(test_sentences)
bias_gen_states = [False, True]
openai_gen_row_update = gr.Row.update(visible=False)
tested_model_dropdown_update = gr.Dropdown.update(visible=True)
return (err_update, # error message
openai_gen_row_update, # OpenAI generation
tested_model_dropdown_update, # Tested Model Dropdown
info_msg_update, # sentences retrieved info update
gr.update(visible=prog_vis), # progress bar top
gr.update(variant=variants[0], interactive=inter[0]), # breadcrumb btn1
gr.update(variant=variants[1], interactive=inter[1]), # breadcrumb btn2
gr.update(variant=variants[2], interactive=inter[2]), # breadcrumb btn3
gr.update(visible=tabs[0]), # tab 1
gr.update(visible=tabs[1]), # tab 2
gr.Accordion.update(visible=bias_gen_states[1], label=f"Test sentences ({len(test_sentences)})"), # accordion
gr.update(visible=True), # Row sentences
gr.DataFrame.update(value=test_sentences), #DataFrame test sentences
gr.update(visible=bias_gen_states[0]), # gen btn
gr.update(visible=bias_gen_states[1]), # bias btn
gr.update(value=', '.join(g1)), # gr1_fixed
gr.update(value=', '.join(g2)), # gr2_fixed
gr.update(value=', '.join(a1)), # att1_fixed
gr.update(value=', '.join(a2)) # att2_fixed
)
def startBiasTest(test_sentences_df, gr1, gr2, att1, att2, model_name, progress=gr.Progress()):
global G_NUM_SENTENCES
variants = ["secondary","secondary","primary"]
inter = [True, True, True]
tabs = [False, False, True]
err_update = updateErrorMsg(False, "")
if test_sentences_df.shape[0] == 0:
G_NUM_SENTENCES = 0
#raise gr.Error(NO_SENTENCES_ERROR)
err_update = updateErrorMsg(True, NO_SENTENCES_ERROR)
progress(0, desc="Starting social bias testing...")
print(f"Type: {type(test_sentences_df)}")
print(f"Data: {test_sentences_df}")
# 1. bias specification
bias_spec = getTermsFromGUI(gr1, gr2, att1, att2)
print(f"Bias spec dict: {bias_spec}")
g1, g2, a1, a2 = bt_mgr.get_words(bias_spec)
# 2. convert to templates
test_sentences_df['Template'] = test_sentences_df.apply(bt_mgr.sentence_to_template, axis=1)
print(f"Data with template: {test_sentences_df}")
# 3. convert to pairs
test_pairs_df = bt_mgr.convert2pairs(bias_spec, test_sentences_df)
print(f"Test pairs: {test_pairs_df.head(3)}")
progress(0.05, desc=f"Loading model {model_name}...")
# 4. get the per sentence bias scores
print(f"Test model name: {model_name}")
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(f"Device: {device}")
tested_model, tested_tokenizer = bt_mgr._getModelSafe(model_name, device)
if tested_model == None:
print("Tested model is empty!!!!")
err_update = updateErrorMsg(True, MODEL_NOT_LOADED_ERROR)
#print(f"Mask token id: {tested_toknizer.mask_token_id}")
# sanity check bias test
bt_mgr.testModelProbability(model_name, tested_model, tested_tokenizer, device)
# testing actual sentences
test_score_df, bias_stats_dict = bt_mgr.testBiasOnPairs(test_pairs_df, bias_spec, model_name, tested_model, tested_tokenizer, device, progress)
print(f"Test scores: {test_score_df.head(3)}")
model_bias_dict = {}
model_bias_dict[bias_stats_dict['tested_model']] = bias_stats_dict['model_bias']
per_attrib_bias = bias_stats_dict['per_attribute']
# bias score
#test_pairs_df['bias_score'] = 0
test_pairs_df.loc[test_pairs_df['stereotyped'] == 1, 'bias_score'] = test_pairs_df['top_logit']-test_pairs_df['bottom_logit']
test_pairs_df.loc[test_pairs_df['stereotyped'] == 0, 'bias_score'] = test_pairs_df['bottom_logit']-test_pairs_df['top_logit']
test_pairs_df['groups_rel'] = test_pairs_df['att_term_1']+"/"+test_pairs_df['att_term_2']
test_pairs_df['stereotyped_b'] = "Unknown"
test_pairs_df.loc[test_pairs_df['stereotyped'] == 1, 'stereotyped_b'] = "yes"
test_pairs_df.loc[test_pairs_df['stereotyped'] == 0, 'stereotyped_b'] = "no"
# construct display dataframe
score_templates_df = test_pairs_df[['group_term','template']].copy()
score_templates_df['Groups'] = test_pairs_df['groups_rel']
#score_templates_df['Bias Score'] = np.round(test_pairs_df['bias_score'],2)
score_templates_df['Stereotyped'] = test_pairs_df['stereotyped_b']
score_templates_df = score_templates_df.rename(columns = {'group_term': "Attribute",
"template": "Template"})
#'Bias Score'
score_templates_df = score_templates_df[['Stereotyped','Attribute','Groups','Template']]
num_sentences = score_templates_df.shape[0]
interpret_msg = bt_mgr._constructInterpretationMsg(bias_spec, num_sentences,
model_name, bias_stats_dict, per_attrib_bias,
score_templates_df
)
return (err_update, # error message
gr.Markdown.update(visible=True), # bar progress
gr.Button.update(variant=variants[0], interactive=inter[0]), # top breadcrumb button 1
gr.Button.update(variant=variants[1], interactive=inter[1]), # top breadcrumb button 2
gr.Button.update(variant=variants[2], interactive=inter[2]), # top breadcrumb button 3
gr.update(visible=tabs[0]), # content tab/column 1
gr.update(visible=tabs[1]), # content tab/column 2
gr.update(visible=tabs[2]), # content tab/column 3
model_bias_dict, # per model bias score
per_attrib_bias, # per attribute bias score
gr.update(value=score_templates_df, visible=True), # Pairs with scores
gr.update(value=interpret_msg, visible=True), # Interpretation message
gr.update(value=', '.join(g1)), # gr1_fixed
gr.update(value=', '.join(g2)), # gr2_fixed
gr.update(value=', '.join(a1)), # att1_fixed
gr.update(value=', '.join(a2)) # att2_fixed
)
# Loading the Interface first time
def loadInterface():
print("Loading the interface...")
open_ai_key = cookie_mgr.loadOpenAIKey()
return gr.Textbox.update(value=open_ai_key)
# Selecting an attribute label in the label component
def selectAttributeLabel(evt: gr.SelectData):
print(f"Selected {evt.value} at {evt.index} from {evt.target}")
object_methods = [method_name for method_name in dir(evt)
if callable(getattr(evt, method_name))]
print("Attributes:")
for att in dir(evt):
print (att, getattr(evt,att))
print(f"Methods: {object_methods}")
return ()
# Editing a sentence in DataFrame
def editSentence(test_sentences, evt: gr.EventData):
print(f"Edit Sentence: {evt}")
print("--BEFORE---")
print(test_sentences[0:10])
print("--AFTER--")
print(f"Data: {evt._data['data'][0:10]}")
# print("Attributes:")
# for att in dir(evt):
# print (att, getattr(evt,att))
# object_methods = [method_name for method_name in dir(evt)
# if callable(getattr(evt, method_name))]
# print(f"Methods: {object_methods}")
theme = gr.themes.Soft().set(
button_small_radius='*radius_xxs',
background_fill_primary='*neutral_50',
border_color_primary='*primary_50'
)
soft = gr.themes.Soft(
primary_hue="slate",
spacing_size="sm",
radius_size="md"
).set(
# body_background_fill="white",
button_primary_background_fill='*primary_400'
)
css_adds = "#group_row {background: white; border-color: white;} \
#attribute_row {background: white; border-color: white;} \
#tested_model_row {background: white; border-color: white;} \
#button_row {background: white; border-color: white;} \
#examples_elem .label {display: none}\
#att1_words {border-color: white;} \
#att2_words {border-color: white;} \
#group1_words {border-color: white;} \
#group2_words {border-color: white;} \
#tested_model_drop {border-color: white;} \
#gen_model_check {border-color: white;} \
#gen_model_check .wrap {border-color: white;} \
#gen_model_check .form {border-color: white;} \
#open_ai_key_box {border-color: white;} \
#gen_col {border-color: white;} \
#gen_col .form {border-color: white;} \
#res_label {background-color: #F8FAFC;} \
#per_attrib_label_elem {background-color: #F8FAFC;} \
#accordion {border-color: #E5E7EB} \
#err_msg_elem p {color: #FF0000; cursor: pointer} "
#'bethecloud/storj_theme'
with gr.Blocks(theme=soft, title="Social Bias Testing in Language Models",
css=css_adds) as iface:
with gr.Row():
with gr.Group():
s1_btn = gr.Button(value="Step 1: Bias Specification", variant="primary", visible=True, interactive=True, size='sm')#.style(size='sm')
s2_btn = gr.Button(value="Step 2: Test Sentences", variant="secondary", visible=True, interactive=False, size='sm')#.style(size='sm')
s3_btn = gr.Button(value="Step 3: Bias Testing", variant="secondary", visible=True, interactive=False, size='sm')#.style(size='sm')
err_message = gr.Markdown("", visible=False, elem_id="err_msg_elem")
bar_progress = gr.Markdown(" ")
# Page 1
with gr.Column(visible=True) as tab1:
with gr.Column():
gr.Markdown("### Social Bias Specification")
gr.Markdown("Use one of the predefined specifications or enter own terms for social groups and attributes")
with gr.Row():
example_biases = gr.Dropdown(
value="Select a predefined bias to test",
allow_custom_value=False,
interactive=True,
choices=[
"Flowers/Insects <> Pleasant/Unpleasant",
"Instruments/Weapons <> Pleasant/Unpleasant",
"Male/Female <> Professions",
"Male/Female <> Science/Art",
"Male/Female <> Career/Family",
"Male/Female <> Math/Art",
"Eur.-American/Afr.-American <> Pleasant/Unpleasant #1",
"Eur.-American/Afr.-American <> Pleasant/Unpleasant #2",
"Eur.-American/Afr.-American <> Pleasant/Unpleasant #3",
"African-Female/European-Male <> Intersectional",
"African-Female/European-Male <> Emergent",
"Mexican-Female/European-Male <> Intersectional",
"Mexican-Female/European-Male <> Emergent",
"Young/Old Name <> Pleasant/Unpleasant",
"Mental/Physical Disease <> Temporary/Permanent",
], label="Example Biases", #info="Select a predefied bias specification to fill-out the terms below."
)
#bias_img = gr.HTML(value="Bias test result saved! ",
# visible=True)
with gr.Row(elem_id="group_row"):
group1 = gr.Textbox(label="Social Group 1", max_lines=1, elem_id="group1_words", elem_classes="input_words", placeholder="brother, father")
group2 = gr.Textbox(label='Social Group 2', max_lines=1, elem_id="group2_words", elem_classes="input_words", placeholder="sister, mother")
with gr.Row(elem_id="attribute_row"):
att1 = gr.Textbox(label='Stereotype for Group 1', max_lines=1, elem_id="att1_words", elem_classes="input_words", placeholder="science, technology")
att2 = gr.Textbox(label='Anti-stereotype for Group 1', max_lines=1, elem_id="att2_words", elem_classes="input_words", placeholder="poetry, art")
with gr.Row():
gr.Markdown(" ")
get_sent_btn = gr.Button(value="Get Sentences", variant="primary", visible=True)
gr.Markdown(" ")
# Page 2
with gr.Column(visible=False) as tab2:
info_sentences_found = gr.Markdown(value="", visible=False)
gr.Markdown("### Tested Social Bias Specification", visible=True)
with gr.Row():
group1_fixed = gr.Textbox(label="Social Group 1", max_lines=1, elem_id="group1_words", elem_classes="input_words", interactive=False, visible=True)
group2_fixed = gr.Textbox(label='Social Group 2', max_lines=1, elem_id="group2_words", elem_classes="input_words", interactive=False, visible=True)
with gr.Row():
att1_fixed = gr.Textbox(label='Stereotype for Group 1', max_lines=1, elem_id="att1_words", elem_classes="input_words", interactive=False, visible=True)
att2_fixed = gr.Textbox(label='Anti-stereotype for Group 1', max_lines=1, elem_id="att2_words", elem_classes="input_words", interactive=False, visible=True)
with gr.Row():
with gr.Column():
#use_online_gen = gr.Checkbox(label="Generate new sentences with ChatGPT (requires Open AI Key)",
# value=False,
# elem_id="gen_model_check")
with gr.Row(visible=False) as online_gen_row:
# OpenAI Key for generator
openai_key = gr.Textbox(lines=1, label="OpenAI API Key", value=None,
placeholder="starts with sk-",
info="Please provide the key for an Open AI account to generate new test sentences",
visible=True,
interactive=True,
elem_id="open_ai_key_box")
num_sentences2gen = gr.Slider(2, 20, value=2, step=1,
interactive=True,
visible=True,
info="Two or more per attribute are recommended for a good bias estimate.",
label="Number of test sentences to generate per attribute", container=True)#.style(container=True) #, info="Number of Sentences to Generate")
# Tested Model Selection - "openlm-research/open_llama_7b"
tested_model_name = gr.Dropdown( ["bert-base-uncased","bert-large-uncased","gpt2","gpt2-medium","gpt2-large","emilyalsentzer/Bio_ClinicalBERT","microsoft/biogpt","openlm-research/open_llama_3b", "openlm-research/open_llama_7b"], value="bert-base-uncased",
multiselect=None,
interactive=True,
label="Tested Language Model",
elem_id="tested_model_drop",
visible=True
#info="Select the language model to test for social bias."
)
with gr.Row():
gr.Markdown(" ")
gen_btn = gr.Button(value="Generate New Sentences", variant="primary", visible=True)
bias_btn = gr.Button(value="Test Model for Social Bias", variant="primary", visible=False)
gr.Markdown(" ")
with gr.Row(visible=False) as row_sentences:
with gr.Accordion(label="Test Sentences", open=False, visible=False) as acc_test_sentences:
test_sentences = gr.DataFrame(
headers=["Test sentence", "Group term", "Attribute term"],
datatype=["str", "str", "str"],
row_count=(1, 'dynamic'),
col_count=(3, 'fixed'),
interactive=True,
visible=True,
#label="Generated Test Sentences",
max_rows=2,
overflow_row_behaviour="paginate")
# Page 3
with gr.Column(visible=False) as tab3:
gr.Markdown("### Tested Social Bias Specification")
with gr.Row():
group1_fixed2 = gr.Textbox(label="Social Group 1", max_lines=1, elem_id="group1_words", elem_classes="input_words", interactive=False)
group2_fixed2 = gr.Textbox(label='Social Group 2', max_lines=1, elem_id="group2_words", elem_classes="input_words", interactive=False)
with gr.Row():
att1_fixed2 = gr.Textbox(label='Stereotype for Group 1', max_lines=1, elem_id="att1_words", elem_classes="input_words", interactive=False)
att2_fixed2 = gr.Textbox(label='Anti-stereotype for Group 1', max_lines=1, elem_id="att2_words", elem_classes="input_words", interactive=False)
with gr.Row():
with gr.Column(scale=2):
gr.Markdown("### Bias Test Results")
with gr.Column(scale=1):
gr.Markdown("### Interpretation")
with gr.Row():
with gr.Column(scale=2):
lbl_model_bias = gr.Markdown("**Model Bias** - % stereotyped choices (↑ more bias)")
model_bias_label = gr.Label(num_top_classes=1, label="% stereotyped choices (↑ more bias)",
elem_id="res_label",
show_label=False)
lbl_attrib_bias = gr.Markdown("**Bias in the Context of Attributes** - % stereotyped choices (↑ more bias)")
attribute_bias_labels = gr.Label(num_top_classes=8, label="Per attribute: % stereotyped choices (↑ more bias)",
elem_id="per_attrib_label_elem",
show_label=False)
with gr.Column(scale=1):
interpretation_msg = gr.HTML(value="Interpretation: Stereotype Score metric details in Nadeem'20", visible=False)
save_msg = gr.HTML(value="Bias test result saved! ",
visible=False)
with gr.Row():
with gr.Accordion("Per Sentence Bias Results", open=False, visible=True):
test_pairs = gr.DataFrame(
headers=["group_term", "template", "att_term_1", "att_term_2","label_1","label_2"],
datatype=["str", "str", "str", "str", "str", "str"],
row_count=(1, 'dynamic'),
#label="Bias Test Results Per Test Sentence Template",
max_rows=2,
overflow_row_behaviour="paginate"
)
# initial interface load
iface.load(fn=loadInterface,
inputs=[],
outputs=[openai_key])
# select from predefined bias specifications
example_biases.select(fn=prefillBiasSpec,
inputs=None,
outputs=[group1, group2, att1, att2])
# Get sentences
get_sent_btn.click(fn=retrieveSentences,
inputs=[group1, group2, att1, att2],
outputs=[err_message, online_gen_row, tested_model_name, info_sentences_found, bar_progress, s1_btn, s2_btn, s3_btn, tab1, tab2, acc_test_sentences, row_sentences, test_sentences, gen_btn, bias_btn,
group1_fixed, group2_fixed, att1_fixed, att2_fixed ])
# request getting sentences
gen_btn.click(fn=generateSentences,
inputs=[group1, group2, att1, att2, openai_key, num_sentences2gen],
outputs=[err_message, info_sentences_found, online_gen_row, #num_sentences2gen,
tested_model_name, acc_test_sentences, row_sentences, test_sentences, gen_btn, bias_btn ])
# Test bias
bias_btn.click(fn=startBiasTest,
inputs=[test_sentences,group1,group2,att1,att2,tested_model_name],
outputs=[err_message, bar_progress, s1_btn, s2_btn, s3_btn, tab1, tab2, tab3, model_bias_label, attribute_bias_labels, test_pairs, interpretation_msg,
group1_fixed2, group2_fixed2, att1_fixed2, att2_fixed2]
)
# top breadcrumbs
s1_btn.click(fn=moveStep1,
inputs=[],
outputs=[s1_btn, s2_btn, s3_btn, tab1, tab2, tab3])
# top breadcrumbs
s2_btn.click(fn=moveStep2,
inputs=[],
outputs=[s1_btn, s2_btn, s3_btn, tab1, tab2, tab3])
# top breadcrumbs
s3_btn.click(fn=moveStep3,
inputs=[],
outputs=[s1_btn, s2_btn, s3_btn, tab1, tab2, tab3])
# Additional Interactions
attribute_bias_labels.select(fn=selectAttributeLabel,
inputs=[],
outputs=[])
# Editing a sentence
test_sentences.change(fn=editSentence,
inputs=[test_sentences],
outputs=[]
)
# tick checkbox to use online generation
#use_online_gen.change(fn=useOnlineGen,
# inputs=[use_online_gen],
# outputs=[openai_key, gen_btn, num_sentences])
iface.queue(concurrency_count=2).launch()