File size: 20,863 Bytes
a53944c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
import pandas as pd
import numpy as np
import torch
import string
import re
import random
import gradio as gr
from tqdm import tqdm
tqdm().pandas()

# BERT imports
from transformers import BertForMaskedLM, BertTokenizer
# GPT2 imports
from transformers import GPT2LMHeadModel, GPT2Tokenizer
# BioBPT
from transformers import BioGptForCausalLM, BioGptTokenizer
# LLAMA
from transformers import LlamaTokenizer, LlamaForCausalLM

import mgr_sentences as smgr
import mgr_biases as bmgr
import mgr_requests as rq_mgr

from error_messages import *

import contextlib
autocast = contextlib.nullcontext
import gc

# Great article about handing big models - https://huggingface.co/blog/accelerate-large-models
def _getModelSafe(model_name, device):
  model = None
  tokenizer = None
  try:
    model, tokenizer = _getModel(model_name, device)
  except Exception as err:
    print(f"Loading Model Error: {err}")
    print("Cleaning the model...")
    model = None
    tokenizer = None
    torch.cuda.empty_cache()
    gc.collect()

  if model == None or tokenizer == None:
    print("Cleaned, trying reloading....")
    model, tokenizer = _getModel(model_name, device)

  return model, tokenizer

def _getModel(model_name, device):
  if "bert" in model_name.lower():
    tokenizer = BertTokenizer.from_pretrained(model_name)
    model = BertForMaskedLM.from_pretrained(model_name)
  elif "biogpt" in model_name.lower():
    tokenizer = BioGptTokenizer.from_pretrained(model_name)
    model = BioGptForCausalLM.from_pretrained(model_name)
  elif 'gpt2' in model_name.lower():
    tokenizer = GPT2Tokenizer.from_pretrained(model_name)
    model = GPT2LMHeadModel.from_pretrained(model_name)
  elif 'llama' in model_name.lower():
    print(f"Getting LLAMA model: {model_name}")
    tokenizer = LlamaTokenizer.from_pretrained(model_name)
    model = LlamaForCausalLM.from_pretrained(model_name,
                                        torch_dtype=torch.bfloat16,
                                        low_cpu_mem_usage=True, ##
                                        #use_safetensors=True, ##
                                        offload_folder="offload",
                                        offload_state_dict = True,
                                        device_map='auto')
    #model.tie_weights()
  if model == None:
    print("Model is empty!!!")
  else:
    model = model.to(device)
    model.eval()
    torch.set_grad_enabled(False)

  return model, tokenizer

# Adding period to end sentence
def add_period(template):
  if template[-1] not in string.punctuation:
    template += "."
  return template

# Convert generated sentence to template
def sentence_to_template(row):  
    sentence = row['Test sentence']
    grp_term = row['Group term']
    template = add_period(sentence.strip("\""))

    fnd_grp = list(re.finditer(f"(^|[ ]+){grp_term.lower()}[ .,!]+", template.lower()))
    while len(fnd_grp) > 0:
      idx1 = fnd_grp[0].span(0)[0]
      if template[idx1] == " ":
        idx1+=1
      idx2 = fnd_grp[0].span(0)[1]-1
      template = template[0:idx1]+f"[T]"+template[idx2:]

      fnd_grp = list(re.finditer(f"(^|[ ]+){grp_term.lower()}[ .,!]+", template.lower()))

    return template

# make sure to use equal number of keywords for opposing attribute and social group specifications
def make_lengths_equal(t1, t2, a1, a2):
  if len(t1) > len(t2):
    t1 = random.sample(t1, len(t2))
  elif len(t1) < len(t2):
    t2 = random.sample(t2, len(t1))

  if len(a1) > len(a2):
    a1 = random.sample(a1, len(a2))
  elif len(a1) < len(a2):
    a2 = random.sample(a2, len(a1))

  return (t1, t2, a1, a2)

def get_words(bias):
    t1 = list(bias['social_groups'].items())[0][1]
    t2 = list(bias['social_groups'].items())[1][1]
    a1 = list(bias['attributes'].items())[0][1]
    a2 = list(bias['attributes'].items())[1][1]

    (t1, t2, a1, a2) = make_lengths_equal(t1, t2, a1, a2)

    return (t1, t2, a1, a2)

def get_group_term_map(bias):
  grp2term = {}
  for group, terms in bias['social_groups'].items():
    grp2term[group] = terms

  return grp2term

def get_att_term_map(bias):
  att2term = {}
  for att, terms in bias['attributes'].items():
    att2term[att] = terms

  return att2term

# check if term within term list
def checkinList(term, term_list, verbose=False):
  for cterm in term_list:
    #print(f"Comparing <{cterm}><{term}>")
    if cterm == term or cterm.replace(" ","-") == term.replace(' ','-'):
      return True
  return False

# Convert Test sentences to stereotype/anti-stereotyped pairs
def convert2pairs(bias_spec, test_sentences_df):
    pairs = []
    headers = ['group_term','template','att_term_1','att_term_2','label_1','label_2']

    # get group to words mapping
    XY_2_xy = get_group_term_map(bias_spec)
    print(f"grp2term: {XY_2_xy}")
    AB_2_ab = get_att_term_map(bias_spec)
    print(f"att2term: {AB_2_ab}")

    ri = 0
    for idx, row in test_sentences_df.iterrows():
        direction = []
        if checkinList(row['Attribute term'], list(AB_2_ab.items())[0][1]):
            direction = ["stereotype", "anti-stereotype"]
        elif checkinList(row['Attribute term'], list(AB_2_ab.items())[1][1]):
            direction = ["anti-stereotype", "stereotype"]
        if len(direction) == 0:
           print("Direction empty!")
           checkinList(row['Attribute term'], list(AB_2_ab.items())[0][1], verbose=True)
           checkinList(row['Attribute term'], list(AB_2_ab.items())[1][1], verbose=True)
           raise gr.Error(BIAS_SENTENCES_MISMATCH_ERROR)

        grp_term_idx = -1
        grp_term_pair = []
        if row['Group term'] in list(XY_2_xy.items())[0][1]:
            grp_term_idx = list(XY_2_xy.items())[0][1].index(row['Group term'])
            try:
              grp_term_pair = [row['Group term'], list(XY_2_xy.items())[1][1][grp_term_idx]]
            except IndexError:
              print(f"Index {grp_term_idx} not found in list {list(XY_2_xy.items())[1][1]}, choosing random...")
              grp_term_idx = random.randint(0, len(list(XY_2_xy.items())[1][1])-1)
              print(f"New group term idx: {grp_term_idx} for list {list(XY_2_xy.items())[1][1]}")
              grp_term_pair = [row['Group term'], list(XY_2_xy.items())[1][1][grp_term_idx]]

        elif row['Group term'] in list(XY_2_xy.items())[1][1]:
            grp_term_idx = list(XY_2_xy.items())[1][1].index(row['Group term'])
            try:
              grp_term_pair = [row['Group term'], list(XY_2_xy.items())[0][1][grp_term_idx]]
            except IndexError:
              print(f"Index {grp_term_idx} not found in list {list(XY_2_xy.items())[0][1]}, choosing random...")
              grp_term_idx = random.randint(0, len(list(XY_2_xy.items())[0][1])-1)
              print(f"New group term idx: {grp_term_idx} for list {list(XY_2_xy.items())[0][1]}")
              grp_term_pair = [row['Group term'], list(XY_2_xy.items())[0][1][grp_term_idx]]

            direction.reverse()

        pairs.append([row['Attribute term'], row['Template'].replace("[T]","[MASK]"), grp_term_pair[0], grp_term_pair[1], direction[0], direction[1]])
    
    bPairs_df = pd.DataFrame(pairs, columns=headers)
    bPairs_df = bPairs_df.drop_duplicates(subset = ["group_term", "template"])
    print(bPairs_df.head(1))

    return bPairs_df

# get multiple indices if target term broken up into multiple tokens
def get_mask_idx(ids, mask_token_id):
  """num_tokens: number of tokens the target word is broken into"""
  ids = torch.Tensor.tolist(ids)[0]
  return ids.index(mask_token_id)

# Get probability for 2 variants of a template using target terms
def getBERTProb(model, tokenizer, template, targets, device, verbose=False):
  prior_token_ids = tokenizer.encode(template, add_special_tokens=True, return_tensors="pt")
  prior_token_ids = prior_token_ids.to(device)
  prior_logits = model(prior_token_ids)

  target_probs = []
  sentences = []
  for target in targets:
    targ_id = tokenizer.encode(target, add_special_tokens=False)
    if verbose:
      print("Targ ids:", targ_id)

    logits = prior_logits[0][0][get_mask_idx(prior_token_ids, tokenizer.mask_token_id)][targ_id]
    if verbose:
      print("Logits:", logits)

    target_probs.append(np.mean(logits.cpu().numpy()))
    sentences.append(template.replace("[MASK]", target))
  
  if verbose:
    print("Target probs:", target_probs)

  return target_probs, sentences

# Get probability for 2 variants of a template using target terms
def getGPT2Prob(model, tokenizer, template, targets, device, verbose=False):
  target_probs = []
  sentences = []
  for target in targets:
    sentence = template.replace("[MASK]", target)
    if verbose:
      print(f"Sentence with target {target}: {sentence}")

    tensor_input = tokenizer.encode(sentence, return_tensors="pt").to(device)
    outputs = model(tensor_input, labels=tensor_input)
    target_probs.append(outputs.loss.item())
    sentences.append(sentence)

  return [max(target_probs)-l for l in target_probs], sentences

# Test function just for sanity check
def testModelProbability(model_name, model, tokenizer, device):
  if 'bert' in model_name:
    print(f"Testing on BERT family model: {model_name}")
    #print(getBERTProb(model, tokenizer, "[MASK] is a carpenter", ["man","woman"], device, verbose=True))
  elif 'gpt' in model_name:
    print(f"Testing on GPT-2 family model: {model_name}")
    #print(getGPT2Prob(model, tokenizer, "African American man was [MASK]", ["poor","rich"], device, verbose=True))
  elif 'llama' in model_name:
    print(f"Testing on LLAMA family model: {model_name}")
    #print(getGPT2Prob(model, tokenizer, "African American man was [MASK]", ["poor","rich"], device, verbose=True))

# bias test on one row of a dataframe -> row is one sentence template with target terms
def checkBias(row, biasProbFunc, model, tokenizer, device, progress, df_len):
  att_terms = [row['att_term_1'], row['att_term_2']]
  labels = [row['label_1'], row['label_2']]
  
  if progress != None:
    progress(row.name/df_len, desc=f"{row['template']}")

  test_res = [1,0] # fail-safe
  try:
    test_res, sentences = biasProbFunc(model, tokenizer, row['template'], att_terms, device)
  except ValueError as err:
    print(f"Error testing sentence: {row['template']}, grp_terms: {att_terms}, err: {err}")
  
  top_term_idx = 0 if test_res[0]>test_res[1] else 1
  bottom_term_idx = 0 if test_res[1]>test_res[0] else 1

  # is stereotyped
  stereotyped = 1 if labels[top_term_idx] == "stereotype" else 0

  return pd.Series({"stereotyped": stereotyped, 
          "top_term": att_terms[top_term_idx], 
          "bottom_term": att_terms[bottom_term_idx],
          "top_logit": test_res[top_term_idx],
          "bottom_logit": test_res[bottom_term_idx]})
   
# Sampling attribute
def sampleAttribute(df, att, n_per_att):
  att_rows = df.query("group_term == @att")
  # copy-paste all gens - no bootstrap
  #grp_bal = att_rows
  
  grp_bal = pd.DataFrame()
  if att_rows.shape[0] >= n_per_att:
    grp_bal = att_rows.sample(n_per_att)
  elif att_rows.shape[0] > 0 and att_rows.shape[0] < n_per_att:
    grp_bal = att_rows.sample(n_per_att, replace=True)

  return grp_bal

# Bootstrapping the results
def bootstrapBiasTest(bias_scores_df, bias_spec):
  bootstrap_df = pd.DataFrame()
  g1, g2, a1, a2 = get_words(bias_spec)

  # bootstrapping parameters
  n_repeats = 30
  n_per_attrbute = 2

  # For bootstraping repeats
  for rep_i in range(n_repeats):
    fold_df = pd.DataFrame()

    # attribute 1
    for an, att1 in enumerate(a1):
      grp_bal = sampleAttribute(bias_scores_df, att1, n_per_attrbute)
      if grp_bal.shape[0] == 0:
        grp_bal = sampleAttribute(bias_scores_df, att1.replace(" ","-"), n_per_attrbute)

      if grp_bal.shape[0] > 0:
        fold_df = pd.concat([fold_df, grp_bal.copy()], ignore_index=True)

    # attribute 2
    for an, att2 in enumerate(a2):
      grp_bal = sampleAttribute(bias_scores_df, att2, n_per_attrbute)
      if grp_bal.shape[0] == 0:
        grp_bal = sampleAttribute(bias_scores_df, att2.replace(" ","-"), n_per_attrbute)

      if grp_bal.shape[0] > 0:
        fold_df = pd.concat([fold_df, grp_bal.copy()], ignore_index=True)

  #if fold_df.shape[0]>0:
  #  unnorm_model, norm_model, perBias_df = biasStatsFold(test_df)
  #  print(f"Gen: {gen_model}, Test: {test_model} [{rep_i}], df-size: {test_df.shape[0]}, Model bias: {norm_model:0.4f}")
  #  perBias_df['test_model'] = test_model
  #  perBias_df['gen_model'] = gen_model

  #  bootstrap_df = pd.concat([bootstrap_df, perBias_df], ignore_index=True)


# testing bias on datafram with test sentence pairs
def testBiasOnPairs(gen_pairs_df, bias_spec, model_name, model, tokenizer, device, progress=None):
    print(f"Testing {model_name} bias on generated pairs: {gen_pairs_df.shape}")

    if 'bert' in model_name.lower():
      print(f"Testing on BERT family model: {model_name}")
      gen_pairs_df[['stereotyped','top_term','bottom_term','top_logit','bottom_logit']] = gen_pairs_df.progress_apply(
            checkBias, biasProbFunc=getBERTProb, model=model, tokenizer=tokenizer, device=device, progress=progress, df_len=gen_pairs_df.shape[0], axis=1)

    elif 'gpt' in model_name.lower():
      print(f"Testing on GPT-2 family model: {model_name}")
      gen_pairs_df[['stereotyped','top_term','bottom_term','top_logit','bottom_logit']] = gen_pairs_df.progress_apply(
            checkBias, biasProbFunc=getGPT2Prob, model=model, tokenizer=tokenizer, device=device, progress=progress, df_len=gen_pairs_df.shape[0], axis=1)

    elif 'llama' in model_name.lower():
      print(f"Testing on LLAMA family model: {model_name}")
      gen_pairs_df[['stereotyped','top_term','bottom_term','top_logit','bottom_logit']] = gen_pairs_df.progress_apply(
            checkBias, biasProbFunc=getGPT2Prob, model=model, tokenizer=tokenizer, device=device, progress=progress, df_len=gen_pairs_df.shape[0], axis=1)

    # Bootstrap
    print(f"BIAS ON PAIRS: {gen_pairs_df}")
    
    #bootstrapBiasTest(gen_pairs_df, bias_spec)


    grp_df = gen_pairs_df.groupby(['group_term'])['stereotyped'].mean()

    # turn the dataframe into dictionary with per model and per bias scores
    bias_stats_dict = {}
    bias_stats_dict['tested_model'] = model_name
    bias_stats_dict['num_templates'] = gen_pairs_df.shape[0]
    bias_stats_dict['model_bias'] = round(grp_df.mean(),4)
    bias_stats_dict['per_bias'] = {}
    bias_stats_dict['per_attribute'] = {}
    bias_stats_dict['per_template'] = []

    # for individual bias
    bias_per_term = gen_pairs_df.groupby(["group_term"])['stereotyped'].mean()
    bias_stats_dict['per_bias'] = round(bias_per_term.mean(),4) #mean normalized by terms
    print(f"Bias: {bias_stats_dict['per_bias'] }")

    # per attribute
    print("Bias score per attribute")
    for attr, bias_score in grp_df.items():
      print(f"Attribute: {attr} -> {bias_score}")
      bias_stats_dict['per_attribute'][attr] = bias_score

    # loop through all the templates (sentence pairs)
    for idx, template_test in gen_pairs_df.iterrows():  
      bias_stats_dict['per_template'].append({
        "template": template_test['template'],
        "attributes": [template_test['att_term_1'], template_test['att_term_2']],
        "stereotyped": template_test['stereotyped'],
        #"discarded": True if template_test['discarded']==1 else False,
        "score_delta": template_test['top_logit'] - template_test['bottom_logit'],
        "stereotyped_version": template_test['top_term'] if template_test['label_1'] == "stereotype" else template_test['bottom_term'],
        "anti_stereotyped_version": template_test['top_term'] if template_test['label_1'] == "anti-stereotype" else template_test['bottom_term']
      })
    
    return grp_df, bias_stats_dict

def startBiasTest(test_sentences_df, model_name):
    # 2. convert to templates
    test_sentences_df['Template'] = test_sentences_df.apply(sentence_to_template, axis=1)
    print(f"Data with template: {test_sentences_df}")

    # 3. convert to pairs
    test_pairs_df = convert2pairs(bias_spec, test_sentences_df)
    print(f"Test pairs: {test_pairs_df.head(3)}")

    # 4. get the per sentence bias scores
    print(f"Test model name: {model_name}")
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    print(f"Device: {device}")
    tested_model, tested_tokenizer = _getModelSafe(model_name, device)
    #print(f"Mask token id: {tested_toknizer.mask_token_id}")
    if tested_tokenizer == None:
      print("Tokanizer is empty!!!")
    if tested_model == None:
      print("Model is empty!!!")
    
    # sanity check bias test
    testModelProbability(model_name, tested_model, tested_tokenizer, device)

    test_score_df, bias_stats_dict = testBiasOnPairs(test_pairs_df, bias_spec, model_name, tested_model, tested_tokenizer, device)
    print(f"Test scores: {test_score_df.head(3)}")

    return test_score_df

def _constructInterpretationMsg(bias_spec, num_sentences, model_name, bias_stats_dict, per_attrib_bias, score_templates_df):
  grp1_terms, grp2_terms = bmgr.getSocialGroupTerms(bias_spec)
  att1_terms, att2_terms = bmgr.getAttributeTerms(bias_spec)
  total_att_terms = len(att1_terms) + len(att2_terms)

  interpret_msg = f"Test result on <b>{model_name}</b> using <b>{num_sentences}</b> sentences. "
  if num_sentences < total_att_terms or num_sentences < 20:
      interpret_msg += "We recommend generating more sentences to get more robust estimates! <br />"
  else:
      interpret_msg += "<br />"

  attrib_by_score = dict(sorted(per_attrib_bias.items(), key=lambda item: item[1], reverse=True))
  print(f"Attribs sorted: {attrib_by_score}")

  # get group to words mapping
  XY_2_xy = get_group_term_map(bias_spec)
  print(f"grp2term: {XY_2_xy}")
  AB_2_ab = get_att_term_map(bias_spec)
  print(f"att2term: {AB_2_ab}")

  grp1_terms = bias_spec['social_groups']['group 1']
  grp2_terms = bias_spec['social_groups']['group 2']
  
  sel_grp1 = None
  sel_grp2 = None
  att_dirs = {}
  for attrib in list(attrib_by_score.keys()):      
    att_label = None
    if checkinList(attrib, list(AB_2_ab.items())[0][1]):
      att_label = 0
    elif checkinList(attrib, list(AB_2_ab.items())[1][1]):
      att_label = 1
    else:
      print("Error!")

    att_dirs[attrib] = att_label

    print(f"Attrib: {attrib} -> {attrib_by_score[attrib]} -> {att_dirs[attrib]}")
    
    if sel_grp1 == None:
        if att_dirs[attrib] == 0:
          sel_grp1 = [attrib, attrib_by_score[attrib]]
    if sel_grp2 == None:
        if att_dirs[attrib] == 1:
          sel_grp2 = [attrib, attrib_by_score[attrib]]
    
  ns_att1 = score_templates_df.query(f"Attribute == '{sel_grp1[0]}'").shape[0]
  #<b>{ns_att1}</b>
  grp1_str = ', '.join([f'<b>\"{t}\"</b>' for t in grp1_terms[0:2]])
  att1_msg = f"For the sentences including <b>\"{sel_grp1[0]}\"</b> the terms from Social Group 1 such as {grp1_str},... are more probable {sel_grp1[1]*100:2.0f}% of the time. "
  print(att1_msg)

  ns_att2 = score_templates_df.query(f"Attribute == '{sel_grp2[0]}'").shape[0]
  #<b>{ns_att2}</b>
  grp2_str = ', '.join([f'<b>\"{t}\"</b>' for t in grp2_terms[0:2]])
  att2_msg = f"For the sentences including <b>\"{sel_grp2[0]}\"</b> the terms from Social Group 2 such as {grp2_str},... are more probable {sel_grp2[1]*100:2.0f}% of the time. "
  print(att2_msg)

  interpret_msg += f"<b>Interpretation:</b> Model chooses stereotyped version of the sentence {bias_stats_dict['model_bias']*100:2.0f}% of time. "
  #interpret_msg += f"It suggests that for the sentences including \"{list(per_attrib_bias.keys())[0]}\" the social group terms \"{bias_spec['social_groups']['group 1'][0]}\", ... are more probable {list(per_attrib_bias.values())[0]*100:2.0f}% of the time. "
  interpret_msg += "<br />"
  interpret_msg += "<div style=\"margin-top: 3px; margin-left: 3px\"><b>◼ </b>" + att1_msg + "<br /></div>"
  interpret_msg += "<div style=\"margin-top: 3px; margin-left: 3px; margin-bottom: 3px\"><b>◼ </b>" + att2_msg + "<br /></div>"
  interpret_msg += "Please examine the exact test sentences used below."
  interpret_msg += "<br />More details about Stereotype Score metric: <a href='https://arxiv.org/abs/2004.09456' target='_blank'>Nadeem'20<a>"

  return interpret_msg
  
  
if __name__ == '__main__':
    print("Testing bias manager...")

    bias_spec = {
        "social_groups": {
            "group 1": ["brother", "father"], 
            "group 2": ["sister", "mother"],
        },
        "attributes": {
            "attribute 1": ["science", "technology"], 
            "attribute 2": ["poetry", "art"]
        }
    }

    sentence_list = rq_mgr._getSavedSentences(bias_spec)
    sentence_df = pd.DataFrame(sentence_list, columns=["Test sentence","Group term","Attribute term"])
    print(sentence_df)

    startBiasTest(sentence_df, 'bert-base-uncased')