File size: 31,287 Bytes
a53944c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
import gradio as gr
import pandas as pd
import numpy as np
import string
import re
import json
import random
import torch
import hashlib, base64
from tqdm import tqdm
from gradio.themes.base import Base
import openai

# error messages
from error_messages import *

tqdm().pandas()

# bias testing manager
import mgr_bias_scoring as bt_mgr

# managers for sentences and biases
import mgr_requests as rq_mgr
import mgr_biases as bmgr

# cookie manager
import mgr_cookies as cookie_mgr

use_paper_sentences = False
G_NUM_SENTENCES = 0

def getTermsFromGUI(group1, group2, att1, att2):
    bias_spec = {
      "social_groups": {
        "group 1": [t.strip(" ") for t in group1.split(",") if len(t.strip(' '))>0], 
        "group 2": [t.strip(" ") for t in group2.split(",") if len(t.strip(' '))>0]},
      "attributes": {
        "attribute 1": [t.strip(" ") for t in att1.split(",") if len(t.strip(' '))>0], 
        "attribute 2": [t.strip(" ") for t in att2.split(",") if len(t.strip(' '))>0]}
    }
    return bias_spec

# Select from example datasets
def prefillBiasSpec(evt: gr.SelectData):
    global use_paper_sentences

    print(f"Selected {evt.value} at {evt.index} from {evt.target}")
    #bias_filename = f"{evt.value[1]}.json"
    bias_filename = f"{bmgr.bias2tag[evt.value]}.json"
    print(f"Filename: {bias_filename}")

    bias_spec = bmgr.loadPredefinedBiasSpec(bias_filename)

    grp1_terms, grp2_terms = bmgr.getSocialGroupTerms(bias_spec)
    att1_terms, att2_terms = bmgr.getAttributeTerms(bias_spec)

    print(f"Grp 1: {grp1_terms}")
    print(f"Grp 2: {grp2_terms}")

    print(f"Att 1: {att1_terms}")
    print(f"Att 2: {att2_terms}")

    #use_paper_sentences = True

    return (', '.join(grp1_terms[0:50]), ', '.join(grp2_terms[0:50]), ', '.join(att1_terms[0:50]), ', '.join(att2_terms[0:50]))

def updateErrorMsg(isError, text):
    return gr.Markdown.update(visible=isError, value=text)

def generateSentences(gr1, gr2, att1, att2, openai_key, num_sent2gen, progress=gr.Progress()):
    global use_paper_sentences, G_NUM_SENTENCES
    print(f"GENERATE SENTENCES CLICKED!, requested sentence per attribute number: {num_sent2gen}")

    # No error messages by default
    err_update = updateErrorMsg(False, "")
    bias_gen_states = [True, False]
    online_gen_visible = True
    info_msg_update = gr.Markdown.update(visible=False, value="")

    test_sentences = []
    bias_spec = getTermsFromGUI(gr1, gr2, att1, att2)
    g1, g2, a1, a2 = bt_mgr.get_words(bias_spec)
    total_att_terms = len(a1)+len(a2)
    all_terms_len = len(g1)+len(g2)+len(a1)+len(a2)
    print(f"Length of all the terms: {all_terms_len}")
    if all_terms_len == 0:
        print("No terms entered!")
        err_update = updateErrorMsg(True, NO_TERMS_ENTERED_ERROR) 
        #raise gr.Error(NO_TERMS_ENTERED_ERROR)
    else:
        if len(openai_key) == 0:
            print("Empty OpenAI key!!!")
            err_update = updateErrorMsg(True, OPENAI_KEY_EMPTY) 
        elif len(openai_key) < 10:
            print("Wrong length OpenAI key!!!")
            err_update = updateErrorMsg(True, OPENAI_KEY_WRONG) 
        else:
            progress(0, desc="ChatGPT generation...")
            print(f"Using Online Generator LLM...")

            test_sentences = rq_mgr._generateOnline(bias_spec, progress, openai_key, num_sent2gen, False)

            #print(f"Test sentences: {test_sentences}")
            num_sentences = len(test_sentences)
            print(f"Returned num sentences: {num_sentences}")

            G_NUM_SENTENCES = num_sentences
            if G_NUM_SENTENCES == 0:
                print("Test sentences empty!")
                #raise gr.Error(NO_SENTENCES_ERROR)  
                err_update = updateErrorMsg(True, NO_SENTENCES_ERROR)
            else:
                # has all sentences, can bias test
                bias_gen_states = [False, True]
                online_gen_visible = False
                info_msg = _genSentenceCoverMsg(test_sentences, total_att_terms, isGen=True)
          
                info_msg_update = gr.Markdown.update(visible=True, value=info_msg)

                cookie_mgr.saveOpenAIKey(openai_key)

    print(f"Online gen visible: {not err_update['visible']}")
    return (err_update, # err message if any
            info_msg_update, # infor message about the number of sentences and coverage
        gr.Row.update(visible=online_gen_visible),    # online gen row
        #gr.Slider.update(minimum=8, maximum=24, value=4), # slider generation
        gr.Dropdown.update(visible=not online_gen_visible), # tested model selection dropdown
        gr.Accordion.update(visible=not online_gen_visible, label=f"Test sentences ({len(test_sentences)})"), # accordion
        gr.update(visible=True), # Row sentences
        gr.DataFrame.update(value=test_sentences), #DataFrame test sentences
        gr.update(visible=bias_gen_states[0]), # gen btn
        gr.update(visible=bias_gen_states[1])  # bias btn
)

def useOnlineGen(value):
  if value == True:
    btn_label = "Generate New Sentences"
  else:
    btn_label = "Use Saved Sentences"

  return (gr.update(visible=value), # OpenAI key TextBox
          gr.update(value=btn_label), # Generate button
          gr.update(visible=value) # Slider
          )

# Interaction with top tabs
def moveStep1():
    variants = ["primary","secondary","secondary"]
    #inter = [True, False, False]
    tabs = [True, False, False]

    return (gr.update(variant=variants[0]),
            gr.update(variant=variants[1]),
            gr.update(variant=variants[2]),
            gr.update(visible=tabs[0]),
            gr.update(visible=tabs[1]),
            gr.update(visible=tabs[2]))

def moveStep2():
    variants = ["secondary","primary","secondary"]
    #inter = [True, True, False]
    tabs = [False, True, False]

    return (gr.update(variant=variants[0]),
            gr.update(variant=variants[1]),
            gr.update(variant=variants[2]),
            gr.update(visible=tabs[0]),
            gr.update(visible=tabs[1]),
            gr.update(visible=tabs[2]))

def moveStep3():
    variants = ["secondary","secondary","primary"]
    #inter = [True, True, False]
    tabs = [False, False, True]

    return (gr.update(variant=variants[0]),
            gr.update(variant=variants[1]),
            gr.update(variant=variants[2]),
            gr.update(visible=tabs[0]),
            gr.update(visible=tabs[1]),
            gr.update(visible=tabs[2]))

def _genSentenceCoverMsg(test_sentences, total_att_terms, isGen=False):
    att_cover_dict = {}
    for att, grp, sent in test_sentences:
        num = att_cover_dict.get(att, 0)
        att_cover_dict[att] = num+1
    att_by_count = dict(sorted(att_cover_dict.items(), key=lambda item: item[1]))
    num_covered_atts = len(list(att_by_count.keys()))
    lest_covered_att = list(att_by_count.keys())[0]
    least_covered_count = att_by_count[lest_covered_att]

    source_msg = "Found" if isGen==False else "Generated"
    if num_covered_atts >= total_att_terms:
        info_msg = f"**{source_msg} {len(test_sentences)} sentences covering all bias specification attributes. Please select model to test.**"
    else:
        info_msg = f"**{source_msg} {len(test_sentences)} sentences covering {num_covered_atts} of {total_att_terms} attributes. Please select model to test.**"
        
    return info_msg

def retrieveSentences(gr1, gr2, att1, att2, progress=gr.Progress()):
    global use_paper_sentences, G_NUM_SENTENCES

    print("RETRIEVE SENTENCES CLICKED!")
    variants = ["secondary","primary","secondary"]
    inter = [True, True, False]
    tabs = [True, False]
    bias_gen_states = [True, False]
    prog_vis = [True]
    err_update = updateErrorMsg(False, "") 
    info_msg_update = gr.Markdown.update(visible=False, value="")
    openai_gen_row_update = gr.Row.update(visible=True)
    tested_model_dropdown_update = gr.Dropdown.update(visible=False)

    test_sentences = []
    bias_spec = getTermsFromGUI(gr1, gr2, att1, att2)
    g1, g2, a1, a2 = bt_mgr.get_words(bias_spec)
    total_att_terms = len(a1)+len(a2)
    all_terms_len = len(g1)+len(g2)+len(a1)+len(a2)
    print(f"Length of all the terms: {all_terms_len}")
    if all_terms_len == 0:
        print("No terms entered!")
        err_update = updateErrorMsg(True, NO_TERMS_ENTERED_ERROR) 
        variants = ["primary","secondary","secondary"]
        inter = [True, False, False]
        tabs = [True, False]
        prog_vis = [False]

        #raise gr.Error(NO_TERMS_ENTERED_ERROR)
    else:
        tabs = [False, True]
        progress(0, desc="Fetching saved sentences...")
        test_sentences = rq_mgr._getSavedSentences(bias_spec, progress, use_paper_sentences)

        #err_update, _, test_sentences = generateSentences(gr1, gr2, att1, att2, progress)
        print(f"Type: {type(test_sentences)}")
        num_sentences = len(test_sentences)
        print(f"Returned num sentences: {num_sentences}")

        err_update = updateErrorMsg(False, "")
        G_NUM_SENTENCES = num_sentences
        if G_NUM_SENTENCES == 0:
            print("Test sentences empty!")
            #raise gr.Error(NO_SENTENCES_ERROR)  
            err_update = updateErrorMsg(True, NO_SENTENCES_ERROR) 

        if len(test_sentences) > 0:
            info_msg = _genSentenceCoverMsg(test_sentences, total_att_terms)
          
            info_msg_update = gr.Markdown.update(visible=True, value=info_msg)
            print(f"Got {len(test_sentences)}, allowing bias test...")
            print(test_sentences)
            bias_gen_states = [False, True]
            openai_gen_row_update = gr.Row.update(visible=False)
            tested_model_dropdown_update = gr.Dropdown.update(visible=True)

    return (err_update, # error message
            openai_gen_row_update, # OpenAI generation
            tested_model_dropdown_update, # Tested Model Dropdown
            info_msg_update, # sentences retrieved info update
            gr.update(visible=prog_vis), # progress bar top
            gr.update(variant=variants[0], interactive=inter[0]), # breadcrumb btn1
            gr.update(variant=variants[1], interactive=inter[1]), # breadcrumb btn2
            gr.update(variant=variants[2], interactive=inter[2]), # breadcrumb btn3
            gr.update(visible=tabs[0]), # tab 1
            gr.update(visible=tabs[1]), # tab 2
            gr.Accordion.update(visible=bias_gen_states[1], label=f"Test sentences ({len(test_sentences)})"), # accordion
            gr.update(visible=True), # Row sentences
            gr.DataFrame.update(value=test_sentences), #DataFrame test sentences
            gr.update(visible=bias_gen_states[0]), # gen btn
            gr.update(visible=bias_gen_states[1]),  # bias btn
            gr.update(value=', '.join(g1)), # gr1_fixed
            gr.update(value=', '.join(g2)), # gr2_fixed
            gr.update(value=', '.join(a1)), # att1_fixed
            gr.update(value=', '.join(a2))  # att2_fixed
        )

def startBiasTest(test_sentences_df, gr1, gr2, att1, att2, model_name, progress=gr.Progress()):
    global G_NUM_SENTENCES

    variants = ["secondary","secondary","primary"]
    inter = [True, True, True]
    tabs = [False, False, True]
    err_update = updateErrorMsg(False, "") 

    if test_sentences_df.shape[0] == 0:
      G_NUM_SENTENCES = 0
      #raise gr.Error(NO_SENTENCES_ERROR)
      err_update = updateErrorMsg(True, NO_SENTENCES_ERROR) 

    
    progress(0, desc="Starting social bias testing...")
    
    print(f"Type: {type(test_sentences_df)}")
    print(f"Data: {test_sentences_df}")

    # 1. bias specification
    bias_spec = getTermsFromGUI(gr1, gr2, att1, att2)
    print(f"Bias spec dict: {bias_spec}")
    g1, g2, a1, a2 = bt_mgr.get_words(bias_spec)

    # 2. convert to templates
    test_sentences_df['Template'] = test_sentences_df.apply(bt_mgr.sentence_to_template, axis=1)
    print(f"Data with template: {test_sentences_df}")

    # 3. convert to pairs
    test_pairs_df = bt_mgr.convert2pairs(bias_spec, test_sentences_df)
    print(f"Test pairs: {test_pairs_df.head(3)}")

    progress(0.05, desc=f"Loading model {model_name}...")
    # 4. get the per sentence bias scores
    print(f"Test model name: {model_name}")
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    print(f"Device: {device}")
    tested_model, tested_tokenizer = bt_mgr._getModelSafe(model_name, device)
    if tested_model == None:
        print("Tested model is empty!!!!")
        err_update = updateErrorMsg(True, MODEL_NOT_LOADED_ERROR) 

    #print(f"Mask token id: {tested_toknizer.mask_token_id}")

    # sanity check bias test
    bt_mgr.testModelProbability(model_name, tested_model, tested_tokenizer, device)

    # testing actual sentences
    test_score_df, bias_stats_dict = bt_mgr.testBiasOnPairs(test_pairs_df, bias_spec, model_name, tested_model, tested_tokenizer, device, progress)
    print(f"Test scores: {test_score_df.head(3)}")

    model_bias_dict = {}
    model_bias_dict[bias_stats_dict['tested_model']] = bias_stats_dict['model_bias']
    
    per_attrib_bias = bias_stats_dict['per_attribute']

    # bias score
    #test_pairs_df['bias_score'] = 0
    test_pairs_df.loc[test_pairs_df['stereotyped'] == 1, 'bias_score'] = test_pairs_df['top_logit']-test_pairs_df['bottom_logit']
    test_pairs_df.loc[test_pairs_df['stereotyped'] == 0, 'bias_score'] = test_pairs_df['bottom_logit']-test_pairs_df['top_logit']
    
    test_pairs_df['groups_rel'] = test_pairs_df['att_term_1']+"/"+test_pairs_df['att_term_2']

    test_pairs_df['stereotyped_b'] = "Unknown"
    test_pairs_df.loc[test_pairs_df['stereotyped'] == 1, 'stereotyped_b'] = "yes"
    test_pairs_df.loc[test_pairs_df['stereotyped'] == 0, 'stereotyped_b'] = "no"

    # construct display dataframe
    score_templates_df = test_pairs_df[['group_term','template']].copy()
    score_templates_df['Groups'] = test_pairs_df['groups_rel']
    #score_templates_df['Bias Score'] = np.round(test_pairs_df['bias_score'],2)
    score_templates_df['Stereotyped'] = test_pairs_df['stereotyped_b']

    score_templates_df = score_templates_df.rename(columns = {'group_term': "Attribute",
                                                               "template": "Template"})
    #'Bias Score'
    score_templates_df = score_templates_df[['Stereotyped','Attribute','Groups','Template']]
    num_sentences = score_templates_df.shape[0]

    interpret_msg = bt_mgr._constructInterpretationMsg(bias_spec, num_sentences, 
                                                       model_name, bias_stats_dict, per_attrib_bias,
                                                       score_templates_df
                                                       )

    return (err_update, # error message
            gr.Markdown.update(visible=True), # bar progress
            gr.Button.update(variant=variants[0], interactive=inter[0]), # top breadcrumb button 1
            gr.Button.update(variant=variants[1], interactive=inter[1]), # top breadcrumb button 2
            gr.Button.update(variant=variants[2], interactive=inter[2]), # top breadcrumb button 3
            gr.update(visible=tabs[0]), # content tab/column 1
            gr.update(visible=tabs[1]), # content tab/column 2
            gr.update(visible=tabs[2]), # content tab/column 3
            model_bias_dict, # per model bias score
            per_attrib_bias, # per attribute bias score
            gr.update(value=score_templates_df, visible=True), # Pairs with scores
            gr.update(value=interpret_msg, visible=True), # Interpretation message
            gr.update(value=', '.join(g1)), # gr1_fixed
            gr.update(value=', '.join(g2)), # gr2_fixed
            gr.update(value=', '.join(a1)), # att1_fixed
            gr.update(value=', '.join(a2))  # att2_fixed
            )

# Loading the Interface first time
def loadInterface():
    print("Loading the interface...")
    open_ai_key = cookie_mgr.loadOpenAIKey()

    return gr.Textbox.update(value=open_ai_key)

# Selecting an attribute label in the label component
def selectAttributeLabel(evt: gr.SelectData):
    print(f"Selected {evt.value} at {evt.index} from {evt.target}")
    object_methods = [method_name for method_name in dir(evt)
                  if callable(getattr(evt, method_name))]
    
    print("Attributes:")
    for att in dir(evt):
        print (att, getattr(evt,att))
    
    print(f"Methods: {object_methods}")

    return ()

# Editing a sentence in DataFrame
def editSentence(test_sentences, evt: gr.EventData):
    print(f"Edit Sentence: {evt}")
    print("--BEFORE---")
    print(test_sentences[0:10])
    print("--AFTER--")
    print(f"Data: {evt._data['data'][0:10]}")
    # print("Attributes:")
    # for att in dir(evt):
    #     print (att, getattr(evt,att))

    # object_methods = [method_name for method_name in dir(evt)
    #               if callable(getattr(evt, method_name))]
    
    # print(f"Methods: {object_methods}")


theme = gr.themes.Soft().set(
    button_small_radius='*radius_xxs',
    background_fill_primary='*neutral_50',
    border_color_primary='*primary_50'
)

soft = gr.themes.Soft(
    primary_hue="slate",
    spacing_size="sm",
    radius_size="md"
).set(
    # body_background_fill="white",
    button_primary_background_fill='*primary_400'
)

css_adds = "#group_row {background: white; border-color: white;} \
               #attribute_row {background: white; border-color: white;} \
               #tested_model_row {background: white; border-color: white;} \
               #button_row {background: white; border-color: white;} \
               #examples_elem .label {display: none}\
               #att1_words {border-color: white;} \
               #att2_words {border-color: white;} \
               #group1_words {border-color: white;} \
               #group2_words {border-color: white;} \
               #tested_model_drop {border-color: white;} \
               #gen_model_check {border-color: white;} \
               #gen_model_check .wrap {border-color: white;} \
               #gen_model_check .form {border-color: white;} \
               #open_ai_key_box {border-color: white;} \
               #gen_col {border-color: white;} \
               #gen_col .form {border-color: white;} \
               #res_label {background-color: #F8FAFC;} \
               #per_attrib_label_elem {background-color: #F8FAFC;} \
               #accordion {border-color: #E5E7EB} \
               #err_msg_elem p {color: #FF0000; cursor: pointer} "

#'bethecloud/storj_theme'
with gr.Blocks(theme=soft, title="Social Bias Testing in Language Models",
               css=css_adds) as iface:
    with gr.Row():
        with gr.Group():
            s1_btn = gr.Button(value="Step 1: Bias Specification", variant="primary", visible=True, interactive=True, size='sm')#.style(size='sm')
            s2_btn = gr.Button(value="Step 2: Test Sentences", variant="secondary", visible=True, interactive=False, size='sm')#.style(size='sm')
            s3_btn = gr.Button(value="Step 3: Bias Testing", variant="secondary", visible=True, interactive=False, size='sm')#.style(size='sm')
    err_message = gr.Markdown("", visible=False, elem_id="err_msg_elem")
    bar_progress = gr.Markdown("     ")

    # Page 1
    with gr.Column(visible=True) as tab1:
        with gr.Column():
            gr.Markdown("### Social Bias Specification")
            gr.Markdown("Use one of the predefined specifications or enter own terms for social groups and attributes")
            with gr.Row():
                example_biases = gr.Dropdown(
                    value="Select a predefined bias to test",
                    allow_custom_value=False,
                    interactive=True,
                    choices=[
                    "Flowers/Insects <> Pleasant/Unpleasant",
                    "Instruments/Weapons <> Pleasant/Unpleasant",
                    "Male/Female <> Professions",
                    "Male/Female <> Science/Art",
                    "Male/Female <> Career/Family", 
                    "Male/Female <> Math/Art", 
                    "Eur.-American/Afr.-American <> Pleasant/Unpleasant #1",
                    "Eur.-American/Afr.-American <> Pleasant/Unpleasant #2",
                    "Eur.-American/Afr.-American <> Pleasant/Unpleasant #3",
                    "African-Female/European-Male <> Intersectional",
                    "African-Female/European-Male <> Emergent",
                    "Mexican-Female/European-Male <> Intersectional",
                    "Mexican-Female/European-Male <> Emergent",
                    "Young/Old Name <> Pleasant/Unpleasant",
                    "Mental/Physical Disease <> Temporary/Permanent",
                    ], label="Example Biases", #info="Select a predefied bias specification to fill-out the terms below."
                )
                #bias_img = gr.HTML(value="<img src='https://docs.streamlit.io/logo.svg'>Bias test result saved! </img>", 
                #                    visible=True)
            with gr.Row(elem_id="group_row"):
                group1 = gr.Textbox(label="Social Group 1", max_lines=1, elem_id="group1_words", elem_classes="input_words", placeholder="brother, father")
                group2 = gr.Textbox(label='Social Group 2', max_lines=1, elem_id="group2_words", elem_classes="input_words", placeholder="sister, mother")
            with gr.Row(elem_id="attribute_row"):
                att1 = gr.Textbox(label='Stereotype for Group 1', max_lines=1, elem_id="att1_words", elem_classes="input_words", placeholder="science, technology")
                att2 = gr.Textbox(label='Anti-stereotype for Group 1', max_lines=1, elem_id="att2_words", elem_classes="input_words", placeholder="poetry, art")
            with gr.Row():
                gr.Markdown("    ")
                get_sent_btn = gr.Button(value="Get Sentences", variant="primary", visible=True)
                gr.Markdown("    ")
    
    # Page 2
    with gr.Column(visible=False) as tab2:
        info_sentences_found = gr.Markdown(value="", visible=False)

        gr.Markdown("### Tested Social Bias Specification", visible=True)
        with gr.Row():
            group1_fixed = gr.Textbox(label="Social Group 1", max_lines=1, elem_id="group1_words", elem_classes="input_words", interactive=False, visible=True)
            group2_fixed = gr.Textbox(label='Social Group 2', max_lines=1, elem_id="group2_words", elem_classes="input_words", interactive=False, visible=True)
        with gr.Row():
            att1_fixed = gr.Textbox(label='Stereotype for Group 1', max_lines=1, elem_id="att1_words", elem_classes="input_words", interactive=False, visible=True)
            att2_fixed = gr.Textbox(label='Anti-stereotype for Group 1', max_lines=1, elem_id="att2_words", elem_classes="input_words", interactive=False, visible=True)

        with gr.Row():
            with gr.Column():
                #use_online_gen = gr.Checkbox(label="Generate new sentences with ChatGPT (requires Open AI Key)", 
                #                            value=False, 
                #                            elem_id="gen_model_check")
                with gr.Row(visible=False) as online_gen_row:
                    # OpenAI Key for generator
                    openai_key = gr.Textbox(lines=1, label="OpenAI API Key", value=None,
                                            placeholder="starts with sk-", 
                            info="Please provide the key for an Open AI account to generate new test sentences",
                            visible=True,
                            interactive=True,
                            elem_id="open_ai_key_box")
                    num_sentences2gen = gr.Slider(2, 20, value=2, step=1, 
                                            interactive=True,
                                            visible=True,
                                            info="Two or more per attribute are recommended for a good bias estimate.",
                                            label="Number of test sentences to generate per attribute", container=True)#.style(container=True) #, info="Number of Sentences to Generate")
                    
                # Tested Model Selection - "openlm-research/open_llama_7b"
                tested_model_name = gr.Dropdown( ["bert-base-uncased","bert-large-uncased","gpt2","gpt2-medium","gpt2-large","emilyalsentzer/Bio_ClinicalBERT","microsoft/biogpt","openlm-research/open_llama_3b", "openlm-research/open_llama_7b"], value="bert-base-uncased", 
                    multiselect=None,
                    interactive=True, 
                    label="Tested Language Model", 
                    elem_id="tested_model_drop",
                    visible=True
                    #info="Select the language model to test for social bias."
                )
            
        with gr.Row():
            gr.Markdown("    ")
            gen_btn = gr.Button(value="Generate New Sentences", variant="primary", visible=True)
            bias_btn = gr.Button(value="Test Model for Social Bias", variant="primary", visible=False)
            gr.Markdown("    ")
        
        with gr.Row(visible=False) as row_sentences:
            with gr.Accordion(label="Test Sentences", open=False, visible=False) as acc_test_sentences:
                test_sentences = gr.DataFrame(
                            headers=["Test sentence", "Group term", "Attribute term"],
                            datatype=["str", "str", "str"],
                            row_count=(1, 'dynamic'),
                            col_count=(3, 'fixed'),
                            interactive=True,
                            visible=True,
                            #label="Generated Test Sentences",
                            max_rows=2,
                            overflow_row_behaviour="paginate")
            
    # Page 3
    with gr.Column(visible=False) as tab3:
        gr.Markdown("### Tested Social Bias Specification")
        with gr.Row():
            group1_fixed2 = gr.Textbox(label="Social Group 1", max_lines=1, elem_id="group1_words", elem_classes="input_words", interactive=False)
            group2_fixed2 = gr.Textbox(label='Social Group 2', max_lines=1, elem_id="group2_words", elem_classes="input_words", interactive=False)
        with gr.Row():
            att1_fixed2 = gr.Textbox(label='Stereotype for Group 1', max_lines=1, elem_id="att1_words", elem_classes="input_words", interactive=False)
            att2_fixed2 = gr.Textbox(label='Anti-stereotype for Group 1', max_lines=1, elem_id="att2_words", elem_classes="input_words", interactive=False)

        with gr.Row():
            with gr.Column(scale=2):
                gr.Markdown("### Bias Test Results")
            with gr.Column(scale=1):
                gr.Markdown("### Interpretation")
        with gr.Row():
            with gr.Column(scale=2):
                lbl_model_bias = gr.Markdown("**Model Bias** - % stereotyped choices (↑ more bias)")
                model_bias_label = gr.Label(num_top_classes=1, label="% stereotyped choices (↑ more bias)",
                                            elem_id="res_label",
                                            show_label=False)
                lbl_attrib_bias = gr.Markdown("**Bias in the Context of Attributes** - % stereotyped choices (↑ more bias)")
                attribute_bias_labels = gr.Label(num_top_classes=8, label="Per attribute: % stereotyped choices (↑ more bias)",
                                                elem_id="per_attrib_label_elem",
                                                show_label=False)
            with gr.Column(scale=1):
                interpretation_msg = gr.HTML(value="Interpretation: Stereotype Score metric details in <a href='https://arxiv.org/abs/2004.09456'>Nadeem'20<a>", visible=False)
                save_msg = gr.HTML(value="<span style=\"color:black\">Bias test result saved! </span>", 
                                visible=False)
        with gr.Row():
            with gr.Accordion("Per Sentence Bias Results", open=False, visible=True):
                test_pairs = gr.DataFrame(
                        headers=["group_term", "template", "att_term_1", "att_term_2","label_1","label_2"],
                        datatype=["str", "str", "str", "str", "str", "str"],
                        row_count=(1, 'dynamic'),
                        #label="Bias Test Results Per Test Sentence Template",
                        max_rows=2,
                        overflow_row_behaviour="paginate"
                        )

    # initial interface load 
    iface.load(fn=loadInterface, 
               inputs=[], 
               outputs=[openai_key])

    # select from predefined bias specifications
    example_biases.select(fn=prefillBiasSpec, 
                        inputs=None, 
                        outputs=[group1, group2, att1, att2])
    
    # Get sentences
    get_sent_btn.click(fn=retrieveSentences, 
                  inputs=[group1, group2, att1, att2], 
                  outputs=[err_message, online_gen_row, tested_model_name, info_sentences_found, bar_progress, s1_btn, s2_btn, s3_btn, tab1, tab2, acc_test_sentences, row_sentences, test_sentences, gen_btn, bias_btn,
                           group1_fixed, group2_fixed, att1_fixed, att2_fixed ])

    # request getting sentences
    gen_btn.click(fn=generateSentences, 
                  inputs=[group1, group2, att1, att2, openai_key, num_sentences2gen], 
                  outputs=[err_message, info_sentences_found, online_gen_row, #num_sentences2gen, 
                           tested_model_name, acc_test_sentences, row_sentences, test_sentences, gen_btn, bias_btn ])
    
    # Test bias
    bias_btn.click(fn=startBiasTest,
                   inputs=[test_sentences,group1,group2,att1,att2,tested_model_name],
                   outputs=[err_message, bar_progress, s1_btn, s2_btn, s3_btn, tab1, tab2, tab3, model_bias_label, attribute_bias_labels, test_pairs, interpretation_msg,
                            group1_fixed2, group2_fixed2, att1_fixed2, att2_fixed2]
                   )
    
    # top breadcrumbs
    s1_btn.click(fn=moveStep1,
                 inputs=[],
                 outputs=[s1_btn, s2_btn, s3_btn, tab1, tab2, tab3])
    
    # top breadcrumbs
    s2_btn.click(fn=moveStep2,
                 inputs=[],
                 outputs=[s1_btn, s2_btn, s3_btn, tab1, tab2, tab3])
    
    # top breadcrumbs
    s3_btn.click(fn=moveStep3,
                 inputs=[],
                 outputs=[s1_btn, s2_btn, s3_btn, tab1, tab2, tab3])

    # Additional Interactions
    attribute_bias_labels.select(fn=selectAttributeLabel,
                                 inputs=[],
                                 outputs=[])
    
    # Editing a sentence
    test_sentences.change(fn=editSentence,
                         inputs=[test_sentences],
                         outputs=[]
                         )

    # tick checkbox to use online generation
    #use_online_gen.change(fn=useOnlineGen, 
    #                     inputs=[use_online_gen],
    #                      outputs=[openai_key, gen_btn, num_sentences])
        

iface.queue(concurrency_count=2).launch()