File size: 31,287 Bytes
a53944c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 |
import gradio as gr
import pandas as pd
import numpy as np
import string
import re
import json
import random
import torch
import hashlib, base64
from tqdm import tqdm
from gradio.themes.base import Base
import openai
# error messages
from error_messages import *
tqdm().pandas()
# bias testing manager
import mgr_bias_scoring as bt_mgr
# managers for sentences and biases
import mgr_requests as rq_mgr
import mgr_biases as bmgr
# cookie manager
import mgr_cookies as cookie_mgr
use_paper_sentences = False
G_NUM_SENTENCES = 0
def getTermsFromGUI(group1, group2, att1, att2):
bias_spec = {
"social_groups": {
"group 1": [t.strip(" ") for t in group1.split(",") if len(t.strip(' '))>0],
"group 2": [t.strip(" ") for t in group2.split(",") if len(t.strip(' '))>0]},
"attributes": {
"attribute 1": [t.strip(" ") for t in att1.split(",") if len(t.strip(' '))>0],
"attribute 2": [t.strip(" ") for t in att2.split(",") if len(t.strip(' '))>0]}
}
return bias_spec
# Select from example datasets
def prefillBiasSpec(evt: gr.SelectData):
global use_paper_sentences
print(f"Selected {evt.value} at {evt.index} from {evt.target}")
#bias_filename = f"{evt.value[1]}.json"
bias_filename = f"{bmgr.bias2tag[evt.value]}.json"
print(f"Filename: {bias_filename}")
bias_spec = bmgr.loadPredefinedBiasSpec(bias_filename)
grp1_terms, grp2_terms = bmgr.getSocialGroupTerms(bias_spec)
att1_terms, att2_terms = bmgr.getAttributeTerms(bias_spec)
print(f"Grp 1: {grp1_terms}")
print(f"Grp 2: {grp2_terms}")
print(f"Att 1: {att1_terms}")
print(f"Att 2: {att2_terms}")
#use_paper_sentences = True
return (', '.join(grp1_terms[0:50]), ', '.join(grp2_terms[0:50]), ', '.join(att1_terms[0:50]), ', '.join(att2_terms[0:50]))
def updateErrorMsg(isError, text):
return gr.Markdown.update(visible=isError, value=text)
def generateSentences(gr1, gr2, att1, att2, openai_key, num_sent2gen, progress=gr.Progress()):
global use_paper_sentences, G_NUM_SENTENCES
print(f"GENERATE SENTENCES CLICKED!, requested sentence per attribute number: {num_sent2gen}")
# No error messages by default
err_update = updateErrorMsg(False, "")
bias_gen_states = [True, False]
online_gen_visible = True
info_msg_update = gr.Markdown.update(visible=False, value="")
test_sentences = []
bias_spec = getTermsFromGUI(gr1, gr2, att1, att2)
g1, g2, a1, a2 = bt_mgr.get_words(bias_spec)
total_att_terms = len(a1)+len(a2)
all_terms_len = len(g1)+len(g2)+len(a1)+len(a2)
print(f"Length of all the terms: {all_terms_len}")
if all_terms_len == 0:
print("No terms entered!")
err_update = updateErrorMsg(True, NO_TERMS_ENTERED_ERROR)
#raise gr.Error(NO_TERMS_ENTERED_ERROR)
else:
if len(openai_key) == 0:
print("Empty OpenAI key!!!")
err_update = updateErrorMsg(True, OPENAI_KEY_EMPTY)
elif len(openai_key) < 10:
print("Wrong length OpenAI key!!!")
err_update = updateErrorMsg(True, OPENAI_KEY_WRONG)
else:
progress(0, desc="ChatGPT generation...")
print(f"Using Online Generator LLM...")
test_sentences = rq_mgr._generateOnline(bias_spec, progress, openai_key, num_sent2gen, False)
#print(f"Test sentences: {test_sentences}")
num_sentences = len(test_sentences)
print(f"Returned num sentences: {num_sentences}")
G_NUM_SENTENCES = num_sentences
if G_NUM_SENTENCES == 0:
print("Test sentences empty!")
#raise gr.Error(NO_SENTENCES_ERROR)
err_update = updateErrorMsg(True, NO_SENTENCES_ERROR)
else:
# has all sentences, can bias test
bias_gen_states = [False, True]
online_gen_visible = False
info_msg = _genSentenceCoverMsg(test_sentences, total_att_terms, isGen=True)
info_msg_update = gr.Markdown.update(visible=True, value=info_msg)
cookie_mgr.saveOpenAIKey(openai_key)
print(f"Online gen visible: {not err_update['visible']}")
return (err_update, # err message if any
info_msg_update, # infor message about the number of sentences and coverage
gr.Row.update(visible=online_gen_visible), # online gen row
#gr.Slider.update(minimum=8, maximum=24, value=4), # slider generation
gr.Dropdown.update(visible=not online_gen_visible), # tested model selection dropdown
gr.Accordion.update(visible=not online_gen_visible, label=f"Test sentences ({len(test_sentences)})"), # accordion
gr.update(visible=True), # Row sentences
gr.DataFrame.update(value=test_sentences), #DataFrame test sentences
gr.update(visible=bias_gen_states[0]), # gen btn
gr.update(visible=bias_gen_states[1]) # bias btn
)
def useOnlineGen(value):
if value == True:
btn_label = "Generate New Sentences"
else:
btn_label = "Use Saved Sentences"
return (gr.update(visible=value), # OpenAI key TextBox
gr.update(value=btn_label), # Generate button
gr.update(visible=value) # Slider
)
# Interaction with top tabs
def moveStep1():
variants = ["primary","secondary","secondary"]
#inter = [True, False, False]
tabs = [True, False, False]
return (gr.update(variant=variants[0]),
gr.update(variant=variants[1]),
gr.update(variant=variants[2]),
gr.update(visible=tabs[0]),
gr.update(visible=tabs[1]),
gr.update(visible=tabs[2]))
def moveStep2():
variants = ["secondary","primary","secondary"]
#inter = [True, True, False]
tabs = [False, True, False]
return (gr.update(variant=variants[0]),
gr.update(variant=variants[1]),
gr.update(variant=variants[2]),
gr.update(visible=tabs[0]),
gr.update(visible=tabs[1]),
gr.update(visible=tabs[2]))
def moveStep3():
variants = ["secondary","secondary","primary"]
#inter = [True, True, False]
tabs = [False, False, True]
return (gr.update(variant=variants[0]),
gr.update(variant=variants[1]),
gr.update(variant=variants[2]),
gr.update(visible=tabs[0]),
gr.update(visible=tabs[1]),
gr.update(visible=tabs[2]))
def _genSentenceCoverMsg(test_sentences, total_att_terms, isGen=False):
att_cover_dict = {}
for att, grp, sent in test_sentences:
num = att_cover_dict.get(att, 0)
att_cover_dict[att] = num+1
att_by_count = dict(sorted(att_cover_dict.items(), key=lambda item: item[1]))
num_covered_atts = len(list(att_by_count.keys()))
lest_covered_att = list(att_by_count.keys())[0]
least_covered_count = att_by_count[lest_covered_att]
source_msg = "Found" if isGen==False else "Generated"
if num_covered_atts >= total_att_terms:
info_msg = f"**{source_msg} {len(test_sentences)} sentences covering all bias specification attributes. Please select model to test.**"
else:
info_msg = f"**{source_msg} {len(test_sentences)} sentences covering {num_covered_atts} of {total_att_terms} attributes. Please select model to test.**"
return info_msg
def retrieveSentences(gr1, gr2, att1, att2, progress=gr.Progress()):
global use_paper_sentences, G_NUM_SENTENCES
print("RETRIEVE SENTENCES CLICKED!")
variants = ["secondary","primary","secondary"]
inter = [True, True, False]
tabs = [True, False]
bias_gen_states = [True, False]
prog_vis = [True]
err_update = updateErrorMsg(False, "")
info_msg_update = gr.Markdown.update(visible=False, value="")
openai_gen_row_update = gr.Row.update(visible=True)
tested_model_dropdown_update = gr.Dropdown.update(visible=False)
test_sentences = []
bias_spec = getTermsFromGUI(gr1, gr2, att1, att2)
g1, g2, a1, a2 = bt_mgr.get_words(bias_spec)
total_att_terms = len(a1)+len(a2)
all_terms_len = len(g1)+len(g2)+len(a1)+len(a2)
print(f"Length of all the terms: {all_terms_len}")
if all_terms_len == 0:
print("No terms entered!")
err_update = updateErrorMsg(True, NO_TERMS_ENTERED_ERROR)
variants = ["primary","secondary","secondary"]
inter = [True, False, False]
tabs = [True, False]
prog_vis = [False]
#raise gr.Error(NO_TERMS_ENTERED_ERROR)
else:
tabs = [False, True]
progress(0, desc="Fetching saved sentences...")
test_sentences = rq_mgr._getSavedSentences(bias_spec, progress, use_paper_sentences)
#err_update, _, test_sentences = generateSentences(gr1, gr2, att1, att2, progress)
print(f"Type: {type(test_sentences)}")
num_sentences = len(test_sentences)
print(f"Returned num sentences: {num_sentences}")
err_update = updateErrorMsg(False, "")
G_NUM_SENTENCES = num_sentences
if G_NUM_SENTENCES == 0:
print("Test sentences empty!")
#raise gr.Error(NO_SENTENCES_ERROR)
err_update = updateErrorMsg(True, NO_SENTENCES_ERROR)
if len(test_sentences) > 0:
info_msg = _genSentenceCoverMsg(test_sentences, total_att_terms)
info_msg_update = gr.Markdown.update(visible=True, value=info_msg)
print(f"Got {len(test_sentences)}, allowing bias test...")
print(test_sentences)
bias_gen_states = [False, True]
openai_gen_row_update = gr.Row.update(visible=False)
tested_model_dropdown_update = gr.Dropdown.update(visible=True)
return (err_update, # error message
openai_gen_row_update, # OpenAI generation
tested_model_dropdown_update, # Tested Model Dropdown
info_msg_update, # sentences retrieved info update
gr.update(visible=prog_vis), # progress bar top
gr.update(variant=variants[0], interactive=inter[0]), # breadcrumb btn1
gr.update(variant=variants[1], interactive=inter[1]), # breadcrumb btn2
gr.update(variant=variants[2], interactive=inter[2]), # breadcrumb btn3
gr.update(visible=tabs[0]), # tab 1
gr.update(visible=tabs[1]), # tab 2
gr.Accordion.update(visible=bias_gen_states[1], label=f"Test sentences ({len(test_sentences)})"), # accordion
gr.update(visible=True), # Row sentences
gr.DataFrame.update(value=test_sentences), #DataFrame test sentences
gr.update(visible=bias_gen_states[0]), # gen btn
gr.update(visible=bias_gen_states[1]), # bias btn
gr.update(value=', '.join(g1)), # gr1_fixed
gr.update(value=', '.join(g2)), # gr2_fixed
gr.update(value=', '.join(a1)), # att1_fixed
gr.update(value=', '.join(a2)) # att2_fixed
)
def startBiasTest(test_sentences_df, gr1, gr2, att1, att2, model_name, progress=gr.Progress()):
global G_NUM_SENTENCES
variants = ["secondary","secondary","primary"]
inter = [True, True, True]
tabs = [False, False, True]
err_update = updateErrorMsg(False, "")
if test_sentences_df.shape[0] == 0:
G_NUM_SENTENCES = 0
#raise gr.Error(NO_SENTENCES_ERROR)
err_update = updateErrorMsg(True, NO_SENTENCES_ERROR)
progress(0, desc="Starting social bias testing...")
print(f"Type: {type(test_sentences_df)}")
print(f"Data: {test_sentences_df}")
# 1. bias specification
bias_spec = getTermsFromGUI(gr1, gr2, att1, att2)
print(f"Bias spec dict: {bias_spec}")
g1, g2, a1, a2 = bt_mgr.get_words(bias_spec)
# 2. convert to templates
test_sentences_df['Template'] = test_sentences_df.apply(bt_mgr.sentence_to_template, axis=1)
print(f"Data with template: {test_sentences_df}")
# 3. convert to pairs
test_pairs_df = bt_mgr.convert2pairs(bias_spec, test_sentences_df)
print(f"Test pairs: {test_pairs_df.head(3)}")
progress(0.05, desc=f"Loading model {model_name}...")
# 4. get the per sentence bias scores
print(f"Test model name: {model_name}")
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(f"Device: {device}")
tested_model, tested_tokenizer = bt_mgr._getModelSafe(model_name, device)
if tested_model == None:
print("Tested model is empty!!!!")
err_update = updateErrorMsg(True, MODEL_NOT_LOADED_ERROR)
#print(f"Mask token id: {tested_toknizer.mask_token_id}")
# sanity check bias test
bt_mgr.testModelProbability(model_name, tested_model, tested_tokenizer, device)
# testing actual sentences
test_score_df, bias_stats_dict = bt_mgr.testBiasOnPairs(test_pairs_df, bias_spec, model_name, tested_model, tested_tokenizer, device, progress)
print(f"Test scores: {test_score_df.head(3)}")
model_bias_dict = {}
model_bias_dict[bias_stats_dict['tested_model']] = bias_stats_dict['model_bias']
per_attrib_bias = bias_stats_dict['per_attribute']
# bias score
#test_pairs_df['bias_score'] = 0
test_pairs_df.loc[test_pairs_df['stereotyped'] == 1, 'bias_score'] = test_pairs_df['top_logit']-test_pairs_df['bottom_logit']
test_pairs_df.loc[test_pairs_df['stereotyped'] == 0, 'bias_score'] = test_pairs_df['bottom_logit']-test_pairs_df['top_logit']
test_pairs_df['groups_rel'] = test_pairs_df['att_term_1']+"/"+test_pairs_df['att_term_2']
test_pairs_df['stereotyped_b'] = "Unknown"
test_pairs_df.loc[test_pairs_df['stereotyped'] == 1, 'stereotyped_b'] = "yes"
test_pairs_df.loc[test_pairs_df['stereotyped'] == 0, 'stereotyped_b'] = "no"
# construct display dataframe
score_templates_df = test_pairs_df[['group_term','template']].copy()
score_templates_df['Groups'] = test_pairs_df['groups_rel']
#score_templates_df['Bias Score'] = np.round(test_pairs_df['bias_score'],2)
score_templates_df['Stereotyped'] = test_pairs_df['stereotyped_b']
score_templates_df = score_templates_df.rename(columns = {'group_term': "Attribute",
"template": "Template"})
#'Bias Score'
score_templates_df = score_templates_df[['Stereotyped','Attribute','Groups','Template']]
num_sentences = score_templates_df.shape[0]
interpret_msg = bt_mgr._constructInterpretationMsg(bias_spec, num_sentences,
model_name, bias_stats_dict, per_attrib_bias,
score_templates_df
)
return (err_update, # error message
gr.Markdown.update(visible=True), # bar progress
gr.Button.update(variant=variants[0], interactive=inter[0]), # top breadcrumb button 1
gr.Button.update(variant=variants[1], interactive=inter[1]), # top breadcrumb button 2
gr.Button.update(variant=variants[2], interactive=inter[2]), # top breadcrumb button 3
gr.update(visible=tabs[0]), # content tab/column 1
gr.update(visible=tabs[1]), # content tab/column 2
gr.update(visible=tabs[2]), # content tab/column 3
model_bias_dict, # per model bias score
per_attrib_bias, # per attribute bias score
gr.update(value=score_templates_df, visible=True), # Pairs with scores
gr.update(value=interpret_msg, visible=True), # Interpretation message
gr.update(value=', '.join(g1)), # gr1_fixed
gr.update(value=', '.join(g2)), # gr2_fixed
gr.update(value=', '.join(a1)), # att1_fixed
gr.update(value=', '.join(a2)) # att2_fixed
)
# Loading the Interface first time
def loadInterface():
print("Loading the interface...")
open_ai_key = cookie_mgr.loadOpenAIKey()
return gr.Textbox.update(value=open_ai_key)
# Selecting an attribute label in the label component
def selectAttributeLabel(evt: gr.SelectData):
print(f"Selected {evt.value} at {evt.index} from {evt.target}")
object_methods = [method_name for method_name in dir(evt)
if callable(getattr(evt, method_name))]
print("Attributes:")
for att in dir(evt):
print (att, getattr(evt,att))
print(f"Methods: {object_methods}")
return ()
# Editing a sentence in DataFrame
def editSentence(test_sentences, evt: gr.EventData):
print(f"Edit Sentence: {evt}")
print("--BEFORE---")
print(test_sentences[0:10])
print("--AFTER--")
print(f"Data: {evt._data['data'][0:10]}")
# print("Attributes:")
# for att in dir(evt):
# print (att, getattr(evt,att))
# object_methods = [method_name for method_name in dir(evt)
# if callable(getattr(evt, method_name))]
# print(f"Methods: {object_methods}")
theme = gr.themes.Soft().set(
button_small_radius='*radius_xxs',
background_fill_primary='*neutral_50',
border_color_primary='*primary_50'
)
soft = gr.themes.Soft(
primary_hue="slate",
spacing_size="sm",
radius_size="md"
).set(
# body_background_fill="white",
button_primary_background_fill='*primary_400'
)
css_adds = "#group_row {background: white; border-color: white;} \
#attribute_row {background: white; border-color: white;} \
#tested_model_row {background: white; border-color: white;} \
#button_row {background: white; border-color: white;} \
#examples_elem .label {display: none}\
#att1_words {border-color: white;} \
#att2_words {border-color: white;} \
#group1_words {border-color: white;} \
#group2_words {border-color: white;} \
#tested_model_drop {border-color: white;} \
#gen_model_check {border-color: white;} \
#gen_model_check .wrap {border-color: white;} \
#gen_model_check .form {border-color: white;} \
#open_ai_key_box {border-color: white;} \
#gen_col {border-color: white;} \
#gen_col .form {border-color: white;} \
#res_label {background-color: #F8FAFC;} \
#per_attrib_label_elem {background-color: #F8FAFC;} \
#accordion {border-color: #E5E7EB} \
#err_msg_elem p {color: #FF0000; cursor: pointer} "
#'bethecloud/storj_theme'
with gr.Blocks(theme=soft, title="Social Bias Testing in Language Models",
css=css_adds) as iface:
with gr.Row():
with gr.Group():
s1_btn = gr.Button(value="Step 1: Bias Specification", variant="primary", visible=True, interactive=True, size='sm')#.style(size='sm')
s2_btn = gr.Button(value="Step 2: Test Sentences", variant="secondary", visible=True, interactive=False, size='sm')#.style(size='sm')
s3_btn = gr.Button(value="Step 3: Bias Testing", variant="secondary", visible=True, interactive=False, size='sm')#.style(size='sm')
err_message = gr.Markdown("", visible=False, elem_id="err_msg_elem")
bar_progress = gr.Markdown(" ")
# Page 1
with gr.Column(visible=True) as tab1:
with gr.Column():
gr.Markdown("### Social Bias Specification")
gr.Markdown("Use one of the predefined specifications or enter own terms for social groups and attributes")
with gr.Row():
example_biases = gr.Dropdown(
value="Select a predefined bias to test",
allow_custom_value=False,
interactive=True,
choices=[
"Flowers/Insects <> Pleasant/Unpleasant",
"Instruments/Weapons <> Pleasant/Unpleasant",
"Male/Female <> Professions",
"Male/Female <> Science/Art",
"Male/Female <> Career/Family",
"Male/Female <> Math/Art",
"Eur.-American/Afr.-American <> Pleasant/Unpleasant #1",
"Eur.-American/Afr.-American <> Pleasant/Unpleasant #2",
"Eur.-American/Afr.-American <> Pleasant/Unpleasant #3",
"African-Female/European-Male <> Intersectional",
"African-Female/European-Male <> Emergent",
"Mexican-Female/European-Male <> Intersectional",
"Mexican-Female/European-Male <> Emergent",
"Young/Old Name <> Pleasant/Unpleasant",
"Mental/Physical Disease <> Temporary/Permanent",
], label="Example Biases", #info="Select a predefied bias specification to fill-out the terms below."
)
#bias_img = gr.HTML(value="<img src='https://docs.streamlit.io/logo.svg'>Bias test result saved! </img>",
# visible=True)
with gr.Row(elem_id="group_row"):
group1 = gr.Textbox(label="Social Group 1", max_lines=1, elem_id="group1_words", elem_classes="input_words", placeholder="brother, father")
group2 = gr.Textbox(label='Social Group 2', max_lines=1, elem_id="group2_words", elem_classes="input_words", placeholder="sister, mother")
with gr.Row(elem_id="attribute_row"):
att1 = gr.Textbox(label='Stereotype for Group 1', max_lines=1, elem_id="att1_words", elem_classes="input_words", placeholder="science, technology")
att2 = gr.Textbox(label='Anti-stereotype for Group 1', max_lines=1, elem_id="att2_words", elem_classes="input_words", placeholder="poetry, art")
with gr.Row():
gr.Markdown(" ")
get_sent_btn = gr.Button(value="Get Sentences", variant="primary", visible=True)
gr.Markdown(" ")
# Page 2
with gr.Column(visible=False) as tab2:
info_sentences_found = gr.Markdown(value="", visible=False)
gr.Markdown("### Tested Social Bias Specification", visible=True)
with gr.Row():
group1_fixed = gr.Textbox(label="Social Group 1", max_lines=1, elem_id="group1_words", elem_classes="input_words", interactive=False, visible=True)
group2_fixed = gr.Textbox(label='Social Group 2', max_lines=1, elem_id="group2_words", elem_classes="input_words", interactive=False, visible=True)
with gr.Row():
att1_fixed = gr.Textbox(label='Stereotype for Group 1', max_lines=1, elem_id="att1_words", elem_classes="input_words", interactive=False, visible=True)
att2_fixed = gr.Textbox(label='Anti-stereotype for Group 1', max_lines=1, elem_id="att2_words", elem_classes="input_words", interactive=False, visible=True)
with gr.Row():
with gr.Column():
#use_online_gen = gr.Checkbox(label="Generate new sentences with ChatGPT (requires Open AI Key)",
# value=False,
# elem_id="gen_model_check")
with gr.Row(visible=False) as online_gen_row:
# OpenAI Key for generator
openai_key = gr.Textbox(lines=1, label="OpenAI API Key", value=None,
placeholder="starts with sk-",
info="Please provide the key for an Open AI account to generate new test sentences",
visible=True,
interactive=True,
elem_id="open_ai_key_box")
num_sentences2gen = gr.Slider(2, 20, value=2, step=1,
interactive=True,
visible=True,
info="Two or more per attribute are recommended for a good bias estimate.",
label="Number of test sentences to generate per attribute", container=True)#.style(container=True) #, info="Number of Sentences to Generate")
# Tested Model Selection - "openlm-research/open_llama_7b"
tested_model_name = gr.Dropdown( ["bert-base-uncased","bert-large-uncased","gpt2","gpt2-medium","gpt2-large","emilyalsentzer/Bio_ClinicalBERT","microsoft/biogpt","openlm-research/open_llama_3b", "openlm-research/open_llama_7b"], value="bert-base-uncased",
multiselect=None,
interactive=True,
label="Tested Language Model",
elem_id="tested_model_drop",
visible=True
#info="Select the language model to test for social bias."
)
with gr.Row():
gr.Markdown(" ")
gen_btn = gr.Button(value="Generate New Sentences", variant="primary", visible=True)
bias_btn = gr.Button(value="Test Model for Social Bias", variant="primary", visible=False)
gr.Markdown(" ")
with gr.Row(visible=False) as row_sentences:
with gr.Accordion(label="Test Sentences", open=False, visible=False) as acc_test_sentences:
test_sentences = gr.DataFrame(
headers=["Test sentence", "Group term", "Attribute term"],
datatype=["str", "str", "str"],
row_count=(1, 'dynamic'),
col_count=(3, 'fixed'),
interactive=True,
visible=True,
#label="Generated Test Sentences",
max_rows=2,
overflow_row_behaviour="paginate")
# Page 3
with gr.Column(visible=False) as tab3:
gr.Markdown("### Tested Social Bias Specification")
with gr.Row():
group1_fixed2 = gr.Textbox(label="Social Group 1", max_lines=1, elem_id="group1_words", elem_classes="input_words", interactive=False)
group2_fixed2 = gr.Textbox(label='Social Group 2', max_lines=1, elem_id="group2_words", elem_classes="input_words", interactive=False)
with gr.Row():
att1_fixed2 = gr.Textbox(label='Stereotype for Group 1', max_lines=1, elem_id="att1_words", elem_classes="input_words", interactive=False)
att2_fixed2 = gr.Textbox(label='Anti-stereotype for Group 1', max_lines=1, elem_id="att2_words", elem_classes="input_words", interactive=False)
with gr.Row():
with gr.Column(scale=2):
gr.Markdown("### Bias Test Results")
with gr.Column(scale=1):
gr.Markdown("### Interpretation")
with gr.Row():
with gr.Column(scale=2):
lbl_model_bias = gr.Markdown("**Model Bias** - % stereotyped choices (↑ more bias)")
model_bias_label = gr.Label(num_top_classes=1, label="% stereotyped choices (↑ more bias)",
elem_id="res_label",
show_label=False)
lbl_attrib_bias = gr.Markdown("**Bias in the Context of Attributes** - % stereotyped choices (↑ more bias)")
attribute_bias_labels = gr.Label(num_top_classes=8, label="Per attribute: % stereotyped choices (↑ more bias)",
elem_id="per_attrib_label_elem",
show_label=False)
with gr.Column(scale=1):
interpretation_msg = gr.HTML(value="Interpretation: Stereotype Score metric details in <a href='https://arxiv.org/abs/2004.09456'>Nadeem'20<a>", visible=False)
save_msg = gr.HTML(value="<span style=\"color:black\">Bias test result saved! </span>",
visible=False)
with gr.Row():
with gr.Accordion("Per Sentence Bias Results", open=False, visible=True):
test_pairs = gr.DataFrame(
headers=["group_term", "template", "att_term_1", "att_term_2","label_1","label_2"],
datatype=["str", "str", "str", "str", "str", "str"],
row_count=(1, 'dynamic'),
#label="Bias Test Results Per Test Sentence Template",
max_rows=2,
overflow_row_behaviour="paginate"
)
# initial interface load
iface.load(fn=loadInterface,
inputs=[],
outputs=[openai_key])
# select from predefined bias specifications
example_biases.select(fn=prefillBiasSpec,
inputs=None,
outputs=[group1, group2, att1, att2])
# Get sentences
get_sent_btn.click(fn=retrieveSentences,
inputs=[group1, group2, att1, att2],
outputs=[err_message, online_gen_row, tested_model_name, info_sentences_found, bar_progress, s1_btn, s2_btn, s3_btn, tab1, tab2, acc_test_sentences, row_sentences, test_sentences, gen_btn, bias_btn,
group1_fixed, group2_fixed, att1_fixed, att2_fixed ])
# request getting sentences
gen_btn.click(fn=generateSentences,
inputs=[group1, group2, att1, att2, openai_key, num_sentences2gen],
outputs=[err_message, info_sentences_found, online_gen_row, #num_sentences2gen,
tested_model_name, acc_test_sentences, row_sentences, test_sentences, gen_btn, bias_btn ])
# Test bias
bias_btn.click(fn=startBiasTest,
inputs=[test_sentences,group1,group2,att1,att2,tested_model_name],
outputs=[err_message, bar_progress, s1_btn, s2_btn, s3_btn, tab1, tab2, tab3, model_bias_label, attribute_bias_labels, test_pairs, interpretation_msg,
group1_fixed2, group2_fixed2, att1_fixed2, att2_fixed2]
)
# top breadcrumbs
s1_btn.click(fn=moveStep1,
inputs=[],
outputs=[s1_btn, s2_btn, s3_btn, tab1, tab2, tab3])
# top breadcrumbs
s2_btn.click(fn=moveStep2,
inputs=[],
outputs=[s1_btn, s2_btn, s3_btn, tab1, tab2, tab3])
# top breadcrumbs
s3_btn.click(fn=moveStep3,
inputs=[],
outputs=[s1_btn, s2_btn, s3_btn, tab1, tab2, tab3])
# Additional Interactions
attribute_bias_labels.select(fn=selectAttributeLabel,
inputs=[],
outputs=[])
# Editing a sentence
test_sentences.change(fn=editSentence,
inputs=[test_sentences],
outputs=[]
)
# tick checkbox to use online generation
#use_online_gen.change(fn=useOnlineGen,
# inputs=[use_online_gen],
# outputs=[openai_key, gen_btn, num_sentences])
iface.queue(concurrency_count=2).launch() |