|
import fire |
|
from transformers import GenerationConfig, LlamaForCausalLM, LlamaTokenizer |
|
import gradio as gr |
|
import torch |
|
import re |
|
|
|
def make_prompt( |
|
references: str = "", |
|
consult: str = "" |
|
): |
|
prompt = "" if references == "" else f"References:\n{references}\n" |
|
prompt += f"Consult:\n{consult}\nResponse:\n" |
|
return prompt |
|
|
|
def main( |
|
model: str = "JessyTsu1/ChatLaw-13B", |
|
): |
|
|
|
tokenizer = LlamaTokenizer.from_pretrained(model) |
|
model = LlamaForCausalLM.from_pretrained( |
|
model, |
|
torch_dtype=torch.float16, |
|
device_map="auto", |
|
) |
|
|
|
if tokenizer.pad_token is None: |
|
tokenizer.pad_token = tokenizer.unk_token |
|
|
|
model.eval() |
|
|
|
def evaluate( |
|
references, |
|
consult, |
|
temperature=0.1, |
|
top_p=0.75, |
|
top_k=40, |
|
num_beams=4, |
|
max_new_tokens=128, |
|
**kwargs, |
|
): |
|
prompt = make_prompt(references, consult) |
|
inputs = tokenizer(prompt, return_tensors="pt") |
|
inputs['input_ids'] = inputs['input_ids'].to(model.device) |
|
generation_config = GenerationConfig( |
|
temperature=temperature, |
|
top_p=top_p, |
|
top_k=top_k, |
|
num_beams=num_beams, |
|
**kwargs, |
|
) |
|
|
|
with torch.no_grad(): |
|
generation_output = model.generate( |
|
**inputs, |
|
generation_config=generation_config, |
|
return_dict_in_generate=True, |
|
output_scores=True, |
|
max_new_tokens=max_new_tokens, |
|
repetition_penalty=1.2, |
|
) |
|
s = generation_output.sequences[0] |
|
output = tokenizer.decode(s) |
|
if search_result := re.search("Response\s*:\s*([\s\S]+?)</s>", output): |
|
return search_result.group(1) |
|
return "Error! Maybe response is over length." |
|
|
|
gr.Interface( |
|
fn=evaluate, |
|
inputs=[ |
|
gr.components.Textbox( |
|
lines=4, |
|
label="References", |
|
placeholder="输入你的参考资料", |
|
), |
|
gr.components.Textbox( |
|
lines=2, |
|
label="Consult", |
|
placeholder="输入你的咨询内容,在问题前加上“详细分析:”会有更好的效果。", |
|
), |
|
gr.components.Slider( |
|
minimum=0, maximum=1, value=0.7, label="Temperature" |
|
), |
|
gr.components.Slider( |
|
minimum=0, maximum=1, value=0.75, label="Top p" |
|
), |
|
gr.components.Slider( |
|
minimum=0, maximum=100, step=1, value=40, label="Top k" |
|
), |
|
gr.components.Slider( |
|
minimum=1, maximum=4, step=1, value=1, label="Beams" |
|
), |
|
gr.components.Slider( |
|
minimum=1, maximum=1024, step=1, value=1024, label="Max tokens" |
|
), |
|
], |
|
outputs = [ |
|
gr.inputs.Textbox( |
|
lines=8, |
|
label="Response", |
|
) |
|
], |
|
title="ChatLaw Academic Demo", |
|
description="", |
|
).queue().launch(server_name="0.0.0.0",server_port=1234) |
|
|
|
|
|
if __name__ == "__main__": |
|
fire.Fire(main) |
|
|