Gosse Minnema
Add sociofillmore code, load dataset via private dataset repo
b11ac48
raw
history blame
12.5 kB
"""
Learn to classify the manually annotated CDA attributes (frames, 'riferimento', orientation)
"""
import sys
import torch
from allennlp.data.vocabulary import Vocabulary
from allennlp.data import DatasetReader, TokenIndexer, Instance, Token
from allennlp.data.fields import TextField, LabelField
from allennlp.data.token_indexers.pretrained_transformer_indexer import (
PretrainedTransformerIndexer,
)
from allennlp.data.tokenizers.pretrained_transformer_tokenizer import (
PretrainedTransformerTokenizer,
)
from allennlp.models import BasicClassifier
from allennlp.modules.text_field_embedders.basic_text_field_embedder import (
BasicTextFieldEmbedder,
)
from allennlp.modules.token_embedders.pretrained_transformer_embedder import (
PretrainedTransformerEmbedder,
)
from allennlp.modules.seq2vec_encoders.bert_pooler import BertPooler
from allennlp.training.checkpointer import Checkpointer
from allennlp.training.gradient_descent_trainer import GradientDescentTrainer
from allennlp.data.data_loaders.simple_data_loader import SimpleDataLoader
from allennlp.training.optimizers import AdamOptimizer
from allennlp.predictors.text_classifier import TextClassifierPredictor
from sklearn.svm import SVC
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.metrics import precision_recall_fscore_support
from sklearn.tree import DecisionTreeClassifier
from sklearn.dummy import DummyClassifier
import pandas as pd
import numpy as np
import spacy
import json
import os
from typing import Dict, Iterable
class MigrationReader(DatasetReader):
def __init__(self, token_indexers, tokenizer):
self.token_indexers = token_indexers
self.tokenizer = tokenizer
def text_to_instance(self, sentence, label=None) -> Instance:
text_field = TextField(self.tokenizer.tokenize(sentence), self.token_indexers)
fields = {"tokens": text_field}
if label is not None:
label_field = LabelField(label)
fields["label"] = label_field
return Instance(fields)
def read_instances(
self, text: pd.Series, labels: pd.Series
) -> Iterable[Instance]:
for sentence, label in zip(text, labels):
instance = self.text_to_instance(sentence, label)
yield instance
def train(attrib, use_gpu=False):
assert attrib in ["cda_frame", "riferimento", "orientation", "fake"]
# load data
print("Loading data...")
x_train, y_train, x_dev, y_dev = load_data(attrib)
print(f"\t\ttrain size: {len(x_train)}")
print(f"\t\tdev size: {len(x_dev)}")
# try different setups
print("Running training setups...")
scores = []
setups = [
# defaults: remove_punct=True, lowercase=True, lemmatize=False, remove_stop=False
# ({}, {}, {"type": "svm", "options": {"kernel": "linear", "C": 1.0}}),
(
{},
{},
{
"type": "bert",
"options": {"transformer": "Musixmatch/umberto-commoncrawl-cased-v1"},
},
),
# ({"lemmatize": True, "remove_stop": True}, {}, {"type": "svm", "options": {"kernel": "linear", "C": 0.8}}),
# ({"lemmatize": True, "remove_stop": True}, {"embed": False}, {"type": "svm", "options": {"kernel": "linear", "C": 0.8}}),
# ({"lemmatize": True, "remove_stop": True}, {"embed": False}, {"type": "dummy", "options": {}}),
# ({"lemmatize": True, "remove_stop": True}, {"embed": False}, {"type": "tree", "options": {}}),
# ({"lemmatize": True, "remove_stop": True}, {}, SVC(kernel='linear')),
# ({"lemmatize": True, "remove_stop": True}, {"min_freq": 5}, SVC(kernel='linear')),
# ({"lemmatize": True, "remove_stop": True}, {"min_freq": 5, "max_freq": .70}, SVC(kernel='linear')),
# ({"lemmatize": True, "remove_stop": True}, {}, SVC(kernel='linear', C=0.6)),
# ({"lemmatize": True, "remove_stop": True}, {}, SVC(kernel='linear', C=0.7)),
# ({"lemmatize": True, "remove_stop": True}, {}, SVC(kernel='linear', C=0.8)),
# ({"lemmatize": True, "remove_stop": True}, {"ngram_range": (1,2)}, SVC(kernel='linear', C=0.8)),
# ({"lemmatize": True, "remove_stop": True}, {}, SVC(kernel="rbf")),
]
nlp = spacy.load("it_core_news_md")
for s_idx, (text_options, vect_options, model_info) in enumerate(setups):
if model_info["type"] == "bert":
print("\t\tPreparing BERT model...")
# cuda_device = 0 if torch.cuda.is_available() else -1
cuda_device = None if use_gpu and torch.cuda.is_available() else -1
transformer = model_info["options"]["transformer"]
token_indexers = {"tokens": PretrainedTransformerIndexer(transformer)}
tokenizer = PretrainedTransformerTokenizer(transformer)
reader = MigrationReader(token_indexers, tokenizer)
train_instances = list(
reader.read_instances(x_train, y_train)
)
dev_instances = list(
reader.read_instances(x_dev, y_dev)
)
vocab = Vocabulary.from_instances(train_instances + dev_instances)
print(vocab.get_vocab_size("tags"))
embedder = BasicTextFieldEmbedder(
{"tokens": PretrainedTransformerEmbedder(transformer)}
)
seq2vec = BertPooler(transformer)
model = BasicClassifier(vocab, embedder, seq2vec, namespace="tags")
if use_gpu:
model = model.cuda(cuda_device)
checkpoint_dir = f"/scratch/p289731/cda_classify/model_{attrib}/checkpoints/"
serialization_dir = f"/scratch/p289731/cda_classify/model_{attrib}/serialize/"
os.makedirs(checkpoint_dir)
os.makedirs(serialization_dir)
checkpointer = Checkpointer(checkpoint_dir)
optimizer = AdamOptimizer(
[(n, p) for n, p in model.named_parameters() if p.requires_grad],
lr=1e-6
)
train_loader = SimpleDataLoader(train_instances, batch_size=8, shuffle=True)
dev_loader = SimpleDataLoader(dev_instances, batch_size=8, shuffle=False)
train_loader.index_with(vocab)
dev_loader.index_with(vocab)
print("\t\tTraining BERT model")
trainer = GradientDescentTrainer(
model,
optimizer,
train_loader,
validation_data_loader=dev_loader,
patience=32,
checkpointer=checkpointer,
cuda_device=cuda_device,
serialization_dir=serialization_dir
)
trainer.train()
print("\t\tProducing predictions...")
predictor = TextClassifierPredictor(model, reader)
predictions = [predictor.predict(sentence) for sentence in x_dev]
y_dev_pred = [p["label"] for p in predictions]
class_labels = list(vocab.get_token_to_index_vocabulary("labels").keys())
elif model_info["type"] in ["svm", "tree", "dummy"]:
# extract features
print("\t\tExtracting features...")
x_train_fts, vectorizer = extract_features(
x_train, nlp, text_options, **vect_options
)
x_dev_fts, _ = extract_features(
x_dev, nlp, text_options, **vect_options, vectorizer=vectorizer
)
if not vect_options["embed"]:
print(f"\t\t\tnum features: {len(vectorizer.vocabulary_)}")
else:
assert model_info["type"] != "tree", "Decision tree does not support embedding input"
print("\t\tTraining the model...")
if model_info["type"] == "svm":
model = SVC(**model_info["options"])
elif model_info["type"] == "tree":
model = DecisionTreeClassifier()
else:
model = DummyClassifier()
model.fit(x_train_fts, y_train)
# evaluate on dev
print("\t\tValidating the model...")
y_dev_pred = model.predict(x_dev_fts)
class_labels = model.classes_
p_micro, r_micro, f_micro, _ = precision_recall_fscore_support(
y_dev, y_dev_pred, average="micro"
)
p_classes, r_classes, f_classes, _ = precision_recall_fscore_support(
y_dev, y_dev_pred, average=None, labels=class_labels, zero_division=0
)
print(
f"\t\t\tOverall scores (micro-averaged):\tP={p_micro}\tR={r_micro}\tF={f_micro}"
)
scores.append(
{
"micro": {"p": p_micro, "r": r_micro, "f": f_micro},
"classes": {
"p": list(zip(class_labels, p_classes)),
"r": list(zip(class_labels, r_classes)),
"f": list(zip(class_labels, f_classes)),
},
}
)
prediction_df = pd.DataFrame(
zip(x_dev, y_dev, y_dev_pred), columns=["headline", "gold", "prediction"]
)
prediction_df.to_csv(
f"output/migration/cda_classify/predictions_{attrib}_{s_idx:02}.csv"
)
with open(
f"output/migration/cda_classify/scores_{attrib}.json", "w", encoding="utf-8"
) as f_scores:
json.dump(scores, f_scores, indent=4)
def load_data(attrib):
train_data = pd.read_csv("output/migration/preprocess/annotations_train.csv")
dev_data = pd.read_csv("output/migration/preprocess/annotations_dev.csv")
x_train = train_data["Titolo"]
x_dev = dev_data["Titolo"]
if attrib == "cda_frame":
y_train = train_data["frame"]
y_dev = dev_data["frame"]
elif attrib == "riferimento":
y_train = train_data["riferimento"]
y_dev = dev_data["riferimento"]
elif attrib == "orientation":
y_train = train_data["orientation"]
y_dev = dev_data["orientation"]
# fake task to test setup
else:
y_train = pd.Series(["true" if "rifugiato" in exa else "false" for exa in x_train])
y_dev = pd.Series(["true" if "rifugiato" in exa else "false" for exa in x_dev])
return x_train, y_train, x_dev, y_dev
def extract_features(
headlines,
nlp,
text_options,
embed=False,
min_freq=1,
max_freq=1.0,
ngram_range=(1, 1),
vectorizer=None,
):
if embed:
vectorized = np.array(
[vec for vec in process_text(headlines, nlp, embed=True, **text_options)]
)
else:
tokenized = [
" ".join(sent) for sent in process_text(headlines, nlp, **text_options)
]
if vectorizer is None:
vectorizer = CountVectorizer(
lowercase=False,
analyzer="word",
min_df=min_freq,
max_df=max_freq,
ngram_range=ngram_range,
)
vectorized = vectorizer.fit_transform(tokenized)
else:
vectorized = vectorizer.transform(tokenized)
return vectorized, vectorizer
def process_text(
headlines,
nlp,
embed=False,
remove_punct=True,
lowercase=True,
lemmatize=False,
remove_stop=False,
):
for sent in headlines:
doc = nlp(sent)
tokens = (
t
for t in doc
if (not remove_stop or not t.is_stop)
and (not remove_punct or t.pos_ not in ["PUNCT", "SYM", "X"])
)
if embed:
if lemmatize:
tokens = (t.vocab[t.lemma].vector for t in tokens)
else:
tokens = (t.vector for t in tokens if t.has_vector)
else:
if lemmatize:
tokens = (t.lemma_ for t in tokens)
else:
tokens = (t.text for t in tokens)
if lowercase:
tokens = (t.lower() for t in tokens)
if embed:
token_arr = np.array([t for t in tokens])
if len(token_arr) == 0:
yield np.random.rand(300)
else:
yield np.mean(token_arr, axis=0)
else:
yield list(tokens)
if __name__ == "__main__":
use_gpu = True if sys.argv[1] == "gpu" else False
# train(attrib="fake", use_gpu=use_gpu)
train(attrib="cda_frame", use_gpu=use_gpu)
# train(attrib="riferimento")
# train(attrib="orientation")