Spaces:
Build error
Build error
File size: 16,696 Bytes
2890e34 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 |
from typing import *
import numpy as np
from .common import VIRTUAL_ROOT, DEFAULT_SPAN
from .bio_smoothing import BIOSmoothing
from .functions import max_match
class Span:
"""
Span is a simple data structure for a span (not necessarily associated with text), along with its label,
children and possibly its parent and a confidence score.
Basic usages (suppose span is a Span object):
1. len(span) -- #children.
2. span[i] -- i-th child.
3. for s in span: ... -- iterate its children.
4. for s in span.bfs: ... -- iterate its descendents.
5. print(span) -- show its description.
6. span.tree() -- print the whole tree.
It provides some utilities:
1. Re-indexing. BPE will change token indices, and the `re_index` method can convert normal tokens
BPE word piece indices, or vice versa.
2. Span object and span dict (JSON format) are mutually convertible (by `to_json` and `from_json` methods).
3. Recursively truncate spans up to a given length. (see `truncate` method)
4. Recursively replace all labels with the default label. (see `ignore_labels` method)
5. Recursively solve the span overlapping problem by removing children overlapped with others.
(see `remove_overlapping` method)
"""
def __init__(
self,
start_idx: int,
end_idx: int,
label: Union[str, int, list] = DEFAULT_SPAN,
is_parent: bool = False,
parent: Optional["Span"] = None,
confidence: Optional[float] = None,
):
"""
Init function. Children should be added using the `add_children` method.
:param start_idx: Start index in a seq of tokens, inclusive.
:param end_idx: End index in a seq of tokens, inclusive.
:param label: Label. If not provided, will assign a default label.
Can be of various types: String, integer, or list of something.
:param is_parent: If True, will be treated as parent. This is important because in the training process of BIO
tagger, when a span has no children, we need to know if it's a parent with no children (so we should have
an training example with all O tags) or not (then the above example doesn't exist).
We follow a convention where if a span is not parent, then the key `children` shouldn't appear in its
JSON dict; if a span is parent but has no children, the key `children` in its JSON dict should appear
and be an empty list.
:param parent: A pointer to its parent.
:param confidence: Confidence value.
"""
self.start_idx, self.end_idx = start_idx, end_idx
self.label: Union[int, str, list] = label
self.is_parent = is_parent
self.parent = parent
self._children: List[Span] = list()
self.confidence = confidence
# Following are for label smoothing. Leave default is you don't need smoothing.
# Logic:
# The label smoothing factors of (i.e. b_smooth, i_smooth, o_smooth) depend on the `child_span` of its parent.
# The re-weighting factor of a span also depends on the `child_span` of its parent, but can be overridden
# by its own `smoothing_weight` field if it's not None.
self.child_smooth: BIOSmoothing = BIOSmoothing()
self.smooth_weight: Optional[float] = None
def add_child(self, span: "Span") -> "Span":
"""
Add a span to children list. Will link current span to child's parent pointer.
:param span: Child span.
"""
assert self.is_parent
span.parent = self
self._children.append(span)
return self
def re_index(
self,
offsets: List[Optional[Tuple[int, int]]],
reverse: bool = False,
recursive: bool = True,
inplace: bool = False,
) -> "Span":
"""
BPE will change token indices, and the `re_index` method can convert normal tokens BPE word piece indices,
or vice versa.
We assume Virtual Root has a boundary [-1, -1] before being mapped to the BPE space, and a boundary [0, 0]
after the re-indexing. We use [0, 0] because it's always the BOS token in BPE.
Mapping to BPE space is straight forward. The reverse mapping has special cases where the span might
contain BOS or EOS. Usually this is a parsing bug. We will map the BOS index to 0, and EOS index to -1.
:param offsets: Offsets. Defined by BPE tokenizer and resides in the SpanFinder outputs.
:param reverse: If True, map from the BPE space to original token space.
:param recursive: If True, will apply the re-indexing to its children.
:param inplace: Inplace?
:return: Re-indexed span.
"""
span = self if inplace else self.clone()
span.start_idx, span.end_idx = re_index_span(span.boundary, offsets, reverse)
if recursive:
new_children = list()
for child in span._children:
new_children.append(child.re_index(offsets, reverse, recursive, True))
span._children = new_children
return span
def truncate(self, max_length: int) -> bool:
"""
Discard spans whose end_idx exceeds the max_length (inclusive).
This is done recursively.
This is useful for some encoder like XLMR that has a limit on input length. (512 for XLMR large)
:param max_length: Max length.
:return: You don't need to care return value.
"""
if self.end_idx >= max_length:
return False
else:
self._children = list(filter(lambda x: x.truncate(max_length), self._children))
return True
@classmethod
def virtual_root(cls: "Span", spans: Optional[List["Span"]] = None) -> "Span":
"""
An official method to create a tree: Generate the first layer of spans by yourself, and pass them into this
method.
E.g., for SRL style task, generate a list of events, assign arguments to them as children. Then pass the
events to this method to have a virtual root which serves as a parent of events.
:param spans: 1st layer spans.
:return: Virtual root.
"""
vr = Span(-1, -1, VIRTUAL_ROOT, True)
if spans is not None:
vr._children = spans
for child in vr._children:
child.parent = vr
return vr
def ignore_labels(self) -> None:
"""
Remove all labels. Make them placeholders. Inplace.
"""
self.label = DEFAULT_SPAN
for child in self._children:
child.ignore_labels()
def clone(self) -> "Span":
"""
Clone a tree.
:return: Cloned tree.
"""
span = Span(self.start_idx, self.end_idx, self.label, self.is_parent, self.parent, self.confidence)
span.child_smooth, span.smooth_weight = self.child_smooth, self.smooth_weight
for child in self._children:
span.add_child(child.clone())
return span
def bfs(self) -> Iterable["Span"]:
"""
Iterate over all descendents with BFS, including self.
:return: Spans.
"""
yield self
yield from self._bfs()
def _bfs(self) -> List["Span"]:
"""
Helper function.
"""
for child in self._children:
yield child
for child in self._children:
yield from child._bfs()
def remove_overlapping(self, recursive=True) -> int:
"""
Remove overlapped spans. If spans overlap, will pick the first one and discard the others, judged by start_idx.
:param recursive: Apply to all of the descendents?
:return: The number of spans that are removed.
"""
indices = set()
new_children = list()
removing = 0
for child in self._children:
if len(set(range(child.start_idx, child.end_idx + 1)) & indices) > 0:
removing += 1
continue
indices.update(set(range(child.start_idx, child.end_idx + 1)))
new_children.append(child)
if recursive:
removing += child.remove_overlapping(True)
self._children = new_children
return removing
def describe(self, sentence: Optional[List[str]] = None) -> str:
"""
:param sentence: If provided, will replace the indices with real tokens for presentation.
:return: The description in a single line.
"""
if self.start_idx >= 0:
if sentence is None:
span = f'({self.start_idx}, {self.end_idx})'
else:
span = '(' + ' '.join(sentence[self.start_idx: self.end_idx + 1]) + ')'
if self.is_parent:
return f'<Span: {span}, {self.label}, {len(self._children)} children>'
else:
return f'[Span: {span}, {self.label}]'
else:
return f'<Span Annotation: {self.n_nodes - 1} descendents>'
def __repr__(self) -> str:
return self.describe()
@property
def n_nodes(self) -> int:
"""
:return: Number of descendents + self.
"""
return sum([child.n_nodes for child in self._children], 1)
@property
def boundary(self):
"""
:return: (start_idx, end_idx), both inclusive.
"""
return self.start_idx, self.end_idx
def __iter__(self) -> Iterable["Span"]:
"""
Iterate over children.
"""
yield from self._children
def __len__(self):
"""
:return: #children.
"""
return len(self._children)
def __getitem__(self, idx: int):
"""
:return: The indexed child.
"""
return self._children[idx]
def tree(self, sentence: Optional[List[str]] = None, printing: bool = True) -> str:
"""
A tree description of all descendents. Human readable.
:param sentence: If provided, will replace the indices with real tokens for presentation.
:param printing: If True, will print out.
:return: The description.
"""
ret = list()
ret.append(self.describe(sentence))
for child in self._children:
child_lines = child.tree(sentence, False).split('\n')
for line in child_lines:
ret.append(' ' + line)
desc = '\n'.join(ret)
if printing: print(desc)
else: return desc
def match(
self,
other: "Span",
match_label: bool = True,
depth: int = -1,
ignore_parent_boundary: bool = False,
) -> int:
"""
Used for evaluation. Count how many spans two trees share. Two spans are considered to be identical
if their boundary, label, and parent match.
:param other: The other tree to compare.
:param match_label: If False, will ignore label.
:param depth: If specified as non-negative, will only search thru certain depth.
:param ignore_parent_boundary: If True, two children can be matched ignoring parent boundaries.
:return: #spans two tree share.
"""
if depth == 0:
return 0
if self.label != other.label and match_label:
return 0
if self.boundary == other.boundary:
n_match = 1
elif ignore_parent_boundary:
# Parents fail, Children might match!
n_match = 0
else:
return 0
sub_matches = np.zeros([len(self), len(other)], dtype=np.int)
for self_idx, my_child in enumerate(self):
for other_idx, other_child in enumerate(other):
sub_matches[self_idx, other_idx] = my_child.match(
other_child, match_label, depth-1, ignore_parent_boundary
)
if not ignore_parent_boundary:
for m in [sub_matches, sub_matches.T]:
for line in m:
assert (line > 0).sum() <= 1
n_match += max_match(sub_matches)
return n_match
def to_json(self) -> dict:
"""
To JSON dict format. See init.
"""
ret = {
"label": self.label,
"span": list(self.boundary),
}
if self.confidence is not None:
ret['confidence'] = self.confidence
if self.is_parent:
children = list()
for child in self._children:
children.append(child.to_json())
ret['children'] = children
return ret
@classmethod
def from_json(cls, span_json: Union[list, dict]) -> "Span":
"""
Load from JSON. See init.
"""
if isinstance(span_json, dict):
span = Span(
span_json['span'][0], span_json['span'][1], span_json.get('label', None), 'children' in span_json,
confidence=span_json.get('confidence', None)
)
for child_dict in span_json.get('children', []):
span.add_child(Span.from_json(child_dict))
else:
spans = [Span.from_json(child) for child in span_json]
span = Span.virtual_root(spans)
return span
def map_ontology(
self,
ontology_mapping: Optional[dict] = None,
inplace: bool = True,
recursive: bool = True,
) -> Optional["Span"]:
"""
Map labels to other things, like another ontology of soft labels.
:param ontology_mapping: Mapping dict. The key should be labels, and values can be anything.
Labels not in the dict will not be deleted. So be careful.
:param inplace: Inplace?
:param recursive: Apply to all descendents if True.
:return: The mapped tree.
"""
span = self if inplace else self.clone()
if ontology_mapping is None:
# Do nothing if mapping not provided.
return span
if recursive:
new_children = list()
for child in span:
new_child = child.map_ontology(ontology_mapping, False, True)
if new_child is not None:
new_children.append(new_child)
span._children = new_children
if span.label != VIRTUAL_ROOT:
if span.parent is not None and (span.parent.label, span.label) in ontology_mapping:
span.label = ontology_mapping[(span.parent.label, span.label)]
elif span.label in ontology_mapping:
span.label = ontology_mapping[span.label]
else:
return
return span
def isolate(self) -> "Span":
"""
Generate a span that is identical to self but has no children or parent.
"""
return Span(self.start_idx, self.end_idx, self.label, self.is_parent, None, self.confidence)
def remove_child(self, span: Optional["Span"] = None):
"""
Remove a child. If pass None, will reset the children list.
"""
if span is None:
self._children = list()
else:
del self._children[self._children.index(span)]
def re_index_span(
boundary: Tuple[int, int], offsets: List[Tuple[int, int]], reverse: bool = False
) -> Tuple[int, int]:
"""
Helper function.
"""
if not reverse:
if boundary[0] == boundary[1] == -1:
# Virtual Root
start_idx = end_idx = 0
else:
# --- edit GFM ---
bnd_start, bnd_end = boundary
if bnd_end >= len(offsets):
start_idx, end_idx = None, None
else:
start_idx = offsets[boundary[0]][0]
end_idx = offsets[boundary[1]][1]
# --- END ---
else:
if boundary[0] == boundary[1] == 0:
# Virtual Root
start_idx = end_idx = -1
else:
start_within = [bo[0] <= boundary[0] <= bo[1] if bo is not None else False for bo in offsets]
end_within = [bo[0] <= boundary[1] <= bo[1] if bo is not None else False for bo in offsets]
assert sum(start_within) <= 1 and sum(end_within) <= 1
start_idx = start_within.index(True) if sum(start_within) == 1 else 0
end_idx = end_within.index(True) if sum(end_within) == 1 else len(offsets)
if start_idx > end_idx:
raise IndexError
return start_idx, end_idx
|