File size: 16,696 Bytes
2890e34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
from typing import *

import numpy as np

from .common import VIRTUAL_ROOT, DEFAULT_SPAN
from .bio_smoothing import BIOSmoothing
from .functions import max_match


class Span:
    """
    Span is a simple data structure for a span (not necessarily associated with text), along with its label,
    children and possibly its parent and a confidence score.

    Basic usages (suppose span is a Span object):
        1. len(span) -- #children.
        2. span[i] -- i-th child.
        3. for s in span: ... -- iterate its children.
        4. for s in span.bfs: ... -- iterate its descendents.
        5. print(span) -- show its description.
        6. span.tree() -- print the whole tree.

    It provides some utilities:
        1. Re-indexing. BPE will change token indices, and the `re_index` method can convert normal tokens
            BPE word piece indices, or vice versa.
        2. Span object and span dict (JSON format) are mutually convertible (by `to_json` and `from_json` methods).
        3. Recursively truncate spans up to a given length. (see `truncate` method)
        4. Recursively replace all labels with the default label. (see `ignore_labels` method)
        5. Recursively solve the span overlapping problem by removing children overlapped with others.
            (see `remove_overlapping` method)
    """
    def __init__(
            self,
            start_idx: int,
            end_idx: int,
            label: Union[str, int, list] = DEFAULT_SPAN,
            is_parent: bool = False,
            parent: Optional["Span"] = None,
            confidence: Optional[float] = None,
    ):
        """
        Init function. Children should be added using the `add_children` method.
        :param start_idx: Start index in a seq of tokens, inclusive.
        :param end_idx: End index in a seq of tokens, inclusive.
        :param label: Label. If not provided, will assign a default label.
            Can be of various types: String, integer, or list of something.
        :param is_parent: If True, will be treated as parent. This is important because in the training process of BIO
            tagger, when a span has no children, we need to know if it's a parent with no children (so we should have
            an training example with all O tags) or not (then the above example doesn't exist).
            We follow a convention where if a span is not parent, then the key `children` shouldn't appear in its
            JSON dict; if a span is parent but has no children, the key `children` in its JSON dict should appear
            and be an empty list.
        :param parent: A pointer to its parent.
        :param confidence: Confidence value.
        """
        self.start_idx, self.end_idx = start_idx, end_idx
        self.label: Union[int, str, list] = label
        self.is_parent = is_parent
        self.parent = parent
        self._children: List[Span] = list()
        self.confidence = confidence

        # Following are for label smoothing. Leave default is you don't need smoothing.
        # Logic:
        # The label smoothing factors of (i.e. b_smooth, i_smooth, o_smooth) depend on the `child_span` of its parent.
        # The re-weighting factor of a span also depends on the `child_span` of its parent, but can be overridden
        # by its own `smoothing_weight` field if it's not None.
        self.child_smooth: BIOSmoothing = BIOSmoothing()
        self.smooth_weight: Optional[float] = None

    def add_child(self, span: "Span") -> "Span":
        """
        Add a span to children list. Will link current span to child's parent pointer.
        :param span: Child span.
        """
        assert self.is_parent
        span.parent = self
        self._children.append(span)
        return self

    def re_index(
            self,
            offsets: List[Optional[Tuple[int, int]]],
            reverse: bool = False,
            recursive: bool = True,
            inplace: bool = False,
    ) -> "Span":
        """
        BPE will change token indices, and the `re_index` method can convert normal tokens BPE word piece indices,
        or vice versa.
        We assume Virtual Root has a boundary [-1, -1] before being mapped to the BPE space, and a boundary [0, 0]
        after the re-indexing. We use [0, 0] because it's always the BOS token in BPE.
        Mapping to BPE space is straight forward. The reverse mapping has special cases where the span might
        contain BOS or EOS. Usually this is a parsing bug. We will map the BOS index to 0, and EOS index to -1.
        :param offsets: Offsets. Defined by BPE tokenizer and resides in the SpanFinder outputs.
        :param reverse: If True, map from the BPE space to original token space.
        :param recursive: If True, will apply the re-indexing to its children.
        :param inplace: Inplace?
        :return: Re-indexed span.
        """
        span = self if inplace else self.clone()

        span.start_idx, span.end_idx = re_index_span(span.boundary, offsets, reverse)
        if recursive:
            new_children = list()
            for child in span._children:
                new_children.append(child.re_index(offsets, reverse, recursive, True))
            span._children = new_children
        return span

    def truncate(self, max_length: int) -> bool:
        """
        Discard spans whose end_idx exceeds the max_length (inclusive).
        This is done recursively.
        This is useful for some encoder like XLMR that has a limit on input length. (512 for XLMR large)
        :param max_length: Max length.
        :return: You don't need to care return value.
        """
        if self.end_idx >= max_length:
            return False
        else:
            self._children = list(filter(lambda x: x.truncate(max_length), self._children))
            return True

    @classmethod
    def virtual_root(cls: "Span", spans: Optional[List["Span"]] = None) -> "Span":
        """
        An official method to create a tree: Generate the first layer of spans by yourself, and pass them into this
        method.
        E.g., for SRL style task, generate a list of events, assign arguments to them as children. Then pass the
        events to this method to have a virtual root which serves as a parent of events.
        :param spans: 1st layer spans.
        :return: Virtual root.
        """
        vr = Span(-1, -1, VIRTUAL_ROOT, True)
        if spans is not None:
            vr._children = spans
        for child in vr._children:
            child.parent = vr
        return vr

    def ignore_labels(self) -> None:
        """
        Remove all labels. Make them placeholders. Inplace.
        """
        self.label = DEFAULT_SPAN
        for child in self._children:
            child.ignore_labels()

    def clone(self) -> "Span":
        """
        Clone a tree.
        :return: Cloned tree.
        """
        span = Span(self.start_idx, self.end_idx, self.label, self.is_parent, self.parent, self.confidence)
        span.child_smooth, span.smooth_weight = self.child_smooth, self.smooth_weight
        for child in self._children:
            span.add_child(child.clone())
        return span

    def bfs(self) -> Iterable["Span"]:
        """
        Iterate over all descendents with BFS, including self.
        :return: Spans.
        """
        yield self
        yield from self._bfs()

    def _bfs(self) -> List["Span"]:
        """
        Helper function.
        """
        for child in self._children:
            yield child
        for child in self._children:
            yield from child._bfs()

    def remove_overlapping(self, recursive=True) -> int:
        """
        Remove overlapped spans. If spans overlap, will pick the first one and discard the others, judged by start_idx.
        :param recursive: Apply to all of the descendents?
        :return: The number of spans that are removed.
        """
        indices = set()
        new_children = list()
        removing = 0
        for child in self._children:
            if len(set(range(child.start_idx, child.end_idx + 1)) & indices) > 0:
                removing += 1
                continue
            indices.update(set(range(child.start_idx, child.end_idx + 1)))
            new_children.append(child)
            if recursive:
                removing += child.remove_overlapping(True)
        self._children = new_children
        return removing

    def describe(self, sentence: Optional[List[str]] = None) -> str:
        """
        :param sentence: If provided, will replace the indices with real tokens for presentation.
        :return: The description in a single line.
        """
        if self.start_idx >= 0:
            if sentence is None:
                span = f'({self.start_idx}, {self.end_idx})'
            else:
                span = '(' + ' '.join(sentence[self.start_idx: self.end_idx + 1]) + ')'
            if self.is_parent:
                return f'<Span: {span}, {self.label}, {len(self._children)} children>'
            else:
                return f'[Span: {span}, {self.label}]'
        else:
            return f'<Span Annotation: {self.n_nodes - 1} descendents>'

    def __repr__(self) -> str:
        return self.describe()

    @property
    def n_nodes(self) -> int:
        """
        :return: Number of descendents + self.
        """
        return sum([child.n_nodes for child in self._children], 1)

    @property
    def boundary(self):
        """
        :return: (start_idx, end_idx), both inclusive.
        """
        return self.start_idx, self.end_idx

    def __iter__(self) -> Iterable["Span"]:
        """
        Iterate over children.
        """
        yield from self._children

    def __len__(self):
        """
        :return: #children.
        """
        return len(self._children)

    def __getitem__(self, idx: int):
        """
        :return: The indexed child.
        """
        return self._children[idx]

    def tree(self, sentence: Optional[List[str]] = None, printing: bool = True) -> str:
        """
        A tree description of all descendents. Human readable.
        :param sentence: If provided, will replace the indices with real tokens for presentation.
        :param printing: If True, will print out.
        :return: The description.
        """
        ret = list()
        ret.append(self.describe(sentence))
        for child in self._children:
            child_lines = child.tree(sentence, False).split('\n')
            for line in child_lines:
                ret.append('  ' + line)
        desc = '\n'.join(ret)
        if printing: print(desc)
        else: return desc

    def match(
            self,
            other: "Span",
            match_label: bool = True,
            depth: int = -1,
            ignore_parent_boundary: bool = False,
    ) -> int:
        """
        Used for evaluation. Count how many spans two trees share. Two spans are considered to be identical
        if their boundary, label, and parent match.
        :param other: The other tree to compare.
        :param match_label: If False, will ignore label.
        :param depth: If specified as non-negative, will only search thru certain depth.
        :param ignore_parent_boundary: If True, two children can be matched ignoring parent boundaries.
        :return: #spans two tree share.
        """
        if depth == 0:
            return 0
        if self.label != other.label and match_label:
            return 0
        if self.boundary == other.boundary:
            n_match = 1
        elif ignore_parent_boundary:
            # Parents fail, Children might match!
            n_match = 0
        else:
            return 0

        sub_matches = np.zeros([len(self), len(other)], dtype=np.int)
        for self_idx, my_child in enumerate(self):
            for other_idx, other_child in enumerate(other):
                sub_matches[self_idx, other_idx] = my_child.match(
                    other_child, match_label, depth-1, ignore_parent_boundary
                )
        if not ignore_parent_boundary:
            for m in [sub_matches, sub_matches.T]:
                for line in m:
                    assert (line > 0).sum() <= 1
        n_match += max_match(sub_matches)
        return n_match

    def to_json(self) -> dict:
        """
        To JSON dict format. See init.
        """
        ret = {
            "label": self.label,
            "span": list(self.boundary),
        }
        if self.confidence is not None:
            ret['confidence'] = self.confidence
        if self.is_parent:
            children = list()
            for child in self._children:
                children.append(child.to_json())
            ret['children'] = children
        return ret

    @classmethod
    def from_json(cls, span_json: Union[list, dict]) -> "Span":
        """
        Load from JSON. See init.
        """
        if isinstance(span_json, dict):
            span = Span(
                span_json['span'][0], span_json['span'][1], span_json.get('label', None), 'children' in span_json,
                confidence=span_json.get('confidence', None)
            )
            for child_dict in span_json.get('children', []):
                span.add_child(Span.from_json(child_dict))
        else:
            spans = [Span.from_json(child) for child in span_json]
            span = Span.virtual_root(spans)
        return span

    def map_ontology(
            self,
            ontology_mapping: Optional[dict] = None,
            inplace: bool = True,
            recursive: bool = True,
    ) -> Optional["Span"]:
        """
        Map labels to other things, like another ontology of soft labels.
        :param ontology_mapping: Mapping dict. The key should be labels, and values can be anything.
            Labels not in the dict will not be deleted. So be careful.
        :param inplace: Inplace?
        :param recursive: Apply to all descendents if True.
        :return: The mapped tree.
        """
        span = self if inplace else self.clone()
        if ontology_mapping is None:
            # Do nothing if mapping not provided.
            return span

        if recursive:
            new_children = list()
            for child in span:
                new_child = child.map_ontology(ontology_mapping, False, True)
                if new_child is not None:
                    new_children.append(new_child)
            span._children = new_children

        if span.label != VIRTUAL_ROOT:
            if span.parent is not None and (span.parent.label, span.label) in ontology_mapping:
                span.label = ontology_mapping[(span.parent.label, span.label)]
            elif span.label in ontology_mapping:
                span.label = ontology_mapping[span.label]
            else:
                return

        return span

    def isolate(self) -> "Span":
        """
        Generate a span that is identical to self but has no children or parent.
        """
        return Span(self.start_idx, self.end_idx, self.label, self.is_parent, None, self.confidence)

    def remove_child(self, span: Optional["Span"] = None):
        """
        Remove a child. If pass None, will reset the children list.
        """
        if span is None:
            self._children = list()
        else:
            del self._children[self._children.index(span)]


def re_index_span(
        boundary: Tuple[int, int], offsets: List[Tuple[int, int]], reverse: bool = False
) -> Tuple[int, int]:
    """
    Helper function.
    """
    if not reverse:
        if boundary[0] == boundary[1] == -1:
            # Virtual Root
            start_idx = end_idx = 0
        else:
            # --- edit GFM ---
            bnd_start, bnd_end = boundary
            if bnd_end >= len(offsets):
                start_idx, end_idx = None, None
            else:
                start_idx = offsets[boundary[0]][0]
                end_idx = offsets[boundary[1]][1]
            # --- END ---
    else:
        if boundary[0] == boundary[1] == 0:
            # Virtual Root
            start_idx = end_idx = -1
        else:
            start_within = [bo[0] <= boundary[0] <= bo[1] if bo is not None else False for bo in offsets]
            end_within = [bo[0] <= boundary[1] <= bo[1] if bo is not None else False for bo in offsets]
            assert sum(start_within) <= 1 and sum(end_within) <= 1
            start_idx = start_within.index(True) if sum(start_within) == 1 else 0
            end_idx = end_within.index(True) if sum(end_within) == 1 else len(offsets)
            if start_idx > end_idx:
                raise IndexError
    return start_idx, end_idx