Spaces:
Runtime error
Runtime error
File size: 1,488 Bytes
ba7deb1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 |
# https://atlas.nomic.ai/data/derek2/boru-subreddit-neural-search/map
import os
import pandas as pd
import nomic
from nomic import atlas
import numpy as np
NOMIC_KEY = os.getenv('NOMIC_KEY')
nomic.login(NOMIC_KEY)
def build_nomic(dataset):
df = dataset['train'].to_pandas()
non_embedding_columns = ['date_utc', 'title', 'flair', 'content', 'poster', 'permalink', 'id', 'content_length',
'score', 'percentile_ranges']
# Calculate the 0th, 10th, 20th, ..., 90th percentiles for the 'score' column
percentiles = df['score'].quantile([0, .1, .2, .3, .4, .5, .6, .7, .8, .9]).tolist()
# Ensure the bins are unique and include the maximum score
bins = sorted(set(percentiles + [df['score'].max()]))
# Define the labels for the percentile ranges
# The number of labels should be one less than the number of bins
labels = [int(i * 10) for i in range(len(bins) - 1)]
# Add a 'percentile_ranges' column to the DataFrame
# This assigns each score to its corresponding percentile range
df['percentile_ranges'] = pd.cut(df['score'], bins=bins, labels=labels, include_lowest=True)
# Create Atlas project
project = atlas.map_data(embeddings=np.stack(df['embedding'].values),
data=df[non_embedding_columns].to_dict(orient='records'),
id_field='id',
identifier='BORU Subreddit Neural Search',
) |