import os import time import streamlit as st from htmlTemplates import css, bot_template, user_template from langchain.embeddings import HuggingFaceEmbeddings from langchain.vectorstores import Chroma from langchain.memory import ConversationBufferMemory from langchain.chains import RetrievalQA from pdfminer.high_level import extract_text from langchain.text_splitter import RecursiveCharacterTextSplitter from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForCausalLM # Updated Prompt Template tokenizer = AutoTokenizer.from_pretrained("red1xe/Llama-2-7B-codeGPT") model = AutoModelForCausalLM.from_pretrained("red1xe/Llama-2-7B-codeGPT") persist_directory = 'db' embeddings_model_name = 'sentence-transformers/all-MiniLM-L6-v2' def get_pdf_text(pdf_path): return extract_text(pdf_path) def get_pdf_text_chunks(pdf_text): text_splitter = RecursiveCharacterTextSplitter() return text_splitter.split_text(text=pdf_text, max_chunk_length=1000, min_chunk_length=100, overlap_length=100) def create_vector_store(target_source_chunks): embeddings = HuggingFaceEmbeddings(model_name=embeddings_model_name) db = Chroma(persist_directory=persist_directory, embedding_function=embeddings) db.add(target_source_chunks) return db def get_vector_store(target_source_chunks): embeddings = HuggingFaceEmbeddings(model_name=embeddings_model_name) db = Chroma(persist_directory=persist_directory, embedding_function=embeddings) retriver = db.as_retriever(search_kwargs={"k": target_source_chunks}) return retriver def get_conversation_chain(retriever): memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True,) chain = RetrievalQA.from_llm( llm=model, memory=memory, retriever=retriever, ) return chain def handle_userinput(user_question): if st.session_state.conversation is None: st.warning("Please load the Vectorstore first!") return else: with st.spinner('Thinking...', ): start_time = time.time() response = st.session_state.conversation({'query': user_question}) end_time = time.time() st.session_state.chat_history = response['chat_history'] for i, message in enumerate(st.session_state.chat_history): if i % 2 == 0: st.write(user_template.replace("{{MSG}}", message.content), unsafe_allow_html=True) else: st.write(bot_template.replace("{{MSG}}", message.content), unsafe_allow_html=True) st.write('Elapsed time: {:.2f} seconds'.format(end_time - start_time)) st.balloons() def main(): st.set_page_config(page_title='Chat with PDF', page_icon=':rocket:', layout='wide', ) with st.sidebar.title(':gear: Parameters'): model_n_ctx = st.sidebar.slider('Model N_CTX', min_value=128, max_value=2048, value=1024, step=2) model_n_batch = st.sidebar.slider('Model N_BATCH', min_value=1, max_value=model_n_ctx, value=512, step=2) target_source_chunks = st.sidebar.slider('Target Source Chunks', min_value=1, max_value=10, value=4, step=1) st.write(css, unsafe_allow_html=True) if "conversation" not in st.session_state: st.session_state.conversation = None if "chat_history" not in st.session_state: st.session_state.chat_history = None st.header('Chat with PDF :robot_face:') st.subheader('Upload your PDF file and start chatting with it!') user_question = st.text_input('Enter your message here:') if st.button('Start Chain'): with st.spinner('Working in progress ...'): pdf_file = st.file_uploader("Upload PDF", type=['pdf']) if pdf_file is not None: pdf_text = get_pdf_text(pdf_file) pdf_text_chunks = get_pdf_text_chunks(pdf_text) st.session_state.vector_store = create_vector_store(pdf_text_chunks) st.session_state.conversation = get_conversation_chain( retriever=st.session_state.vector_store, ) st.success('Vectorstore created successfully! You can start chatting now!') else: st.warning('Please upload a PDF file first!') if user_question: handle_userinput(user_question) if __name__ == '__main__': main()