some changes
Browse files
app.py
CHANGED
@@ -1,16 +1,47 @@
|
|
1 |
import streamlit as st
|
2 |
from langchain.embeddings import HuggingFaceEmbeddings
|
3 |
from langchain.vectorstores import FAISS
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
from pdfminer.high_level import extract_text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
st.title("Embedding Creation for Langchain")
|
7 |
st.header("File Upload")
|
8 |
files = st.file_uploader("Upload your files", accept_multiple_files=True, type="pdf")
|
9 |
-
|
10 |
if files:
|
11 |
-
st.header("
|
12 |
-
if st.button("
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
from langchain.embeddings import HuggingFaceEmbeddings
|
3 |
from langchain.vectorstores import FAISS
|
4 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
5 |
+
from langchain.memory import ConversationBufferMemory
|
6 |
+
from langchain.llms import HuggingFaceHub
|
7 |
+
from langchain.chains import RetrievalQA
|
8 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
9 |
+
|
10 |
from pdfminer.high_level import extract_text
|
11 |
+
def get_pdf_text(files):
|
12 |
+
full_text = ""
|
13 |
+
for file in files:
|
14 |
+
text = extract_text(file)
|
15 |
+
text = text.replace("\n", " ")
|
16 |
+
full_text = text + full_text
|
17 |
+
return full_text
|
18 |
|
19 |
st.title("Embedding Creation for Langchain")
|
20 |
st.header("File Upload")
|
21 |
files = st.file_uploader("Upload your files", accept_multiple_files=True, type="pdf")
|
22 |
+
|
23 |
if files:
|
24 |
+
st.header("Start Conversion")
|
25 |
+
if st.button("Ready!"):
|
26 |
+
with st.spinner("Creating chain..."):
|
27 |
+
full_text = get_pdf_text(files)
|
28 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=150)
|
29 |
+
chunks = text_splitter.split_text(full_text)
|
30 |
+
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
31 |
+
vectorstore = FAISS.from_texts(chunks, embeddings)
|
32 |
+
memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True,)
|
33 |
+
llm = AutoModelForCausalLM.from_pretrained("red1xe/Llama-2-7B-codeGPT")
|
34 |
+
chain = RetrievalQA.from_chain_type(
|
35 |
+
llm=llm,
|
36 |
+
chain_type="retrieval-qa",
|
37 |
+
retriever=vectorstore.as_retriever(),
|
38 |
+
memory=memory,
|
39 |
+
)
|
40 |
+
st.success("Done!")
|
41 |
+
st.header("Start Chat")
|
42 |
+
st.subheader("Ask a question")
|
43 |
+
question = st.text_input("Question")
|
44 |
+
if st.button("Ask"):
|
45 |
+
with st.spinner("Thinking..."):
|
46 |
+
answer = chain.query(question)
|
47 |
+
st.success(answer)
|