|
import streamlit as st |
|
from langchain.embeddings import HuggingFaceEmbeddings |
|
from langchain.vectorstores import FAISS |
|
from langchain.text_splitter import RecursiveCharacterTextSplitter |
|
from langchain.memory import ConversationBufferMemory |
|
from langchain.llms import HuggingFaceHub |
|
from langchain.chains import RetrievalQA |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
from pdfminer.high_level import extract_text |
|
def get_pdf_text(files): |
|
full_text = "" |
|
for file in files: |
|
text = extract_text(file) |
|
text = text.replace("\n", " ") |
|
full_text = text + full_text |
|
return full_text |
|
|
|
st.title("Embedding Creation for Langchain") |
|
st.header("File Upload") |
|
files = st.file_uploader("Upload your files", accept_multiple_files=True, type="pdf") |
|
|
|
if files: |
|
st.header("Start Conversion") |
|
if st.button("Ready!"): |
|
with st.spinner("Creating chain..."): |
|
full_text = get_pdf_text(files) |
|
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=150) |
|
chunks = text_splitter.split_text(full_text) |
|
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2") |
|
db = FAISS.from_texts(chunks, embeddings) |
|
memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True,) |
|
|
|
def retrieve_info(query): |
|
similar_response = db.similarity_search(query, k=3) |
|
page_contents_array = [doc.page_contents for doc in similar_response] |
|
page_contents = " ".join(page_contents_array) |
|
return page_contents |
|
|
|
st.header("Chatbot") |
|
st.subheader("Ask a question") |
|
question = st.text_input("Question") |
|
if question: |
|
st.subheader("Answer") |
|
answer = retrieve_info(question) |
|
st.write(answer) |