# Copyright 2024 HuggingFace Inc. and the LlamaFactory team. # # This code is inspired by the HuggingFace's TRL library. # https://github.com/huggingface/trl/blob/v0.8.0/examples/scripts/dpo.py # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING, List, Optional from ...data import PairwiseDataCollatorWithPadding, get_dataset, get_template_and_fix_tokenizer from ...extras.constants import IGNORE_INDEX from ...extras.ploting import plot_loss from ...hparams import ModelArguments from ...model import load_model, load_tokenizer from ..trainer_utils import create_modelcard_and_push, create_ref_model from .trainer import CustomDPOTrainer if TYPE_CHECKING: from transformers import Seq2SeqTrainingArguments, TrainerCallback from ...hparams import DataArguments, FinetuningArguments def run_dpo( model_args: "ModelArguments", data_args: "DataArguments", training_args: "Seq2SeqTrainingArguments", finetuning_args: "FinetuningArguments", callbacks: Optional[List["TrainerCallback"]] = None, ): tokenizer_module = load_tokenizer(model_args) tokenizer = tokenizer_module["tokenizer"] template = get_template_and_fix_tokenizer(tokenizer, data_args) dataset_module = get_dataset(template, model_args, data_args, training_args, stage="rm", **tokenizer_module) model = load_model(tokenizer, model_args, finetuning_args, training_args.do_train) data_collator = PairwiseDataCollatorWithPadding( template=template, pad_to_multiple_of=8, label_pad_token_id=IGNORE_INDEX if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id, **tokenizer_module, ) # Create reference model if finetuning_args.use_ref_model: if finetuning_args.ref_model is None and (not training_args.do_train): # use the model itself ref_model = model else: ref_model = create_ref_model(model_args, finetuning_args) else: ref_model = None # Update arguments training_args.remove_unused_columns = False # important for multimodal and pairwise dataset # Initialize our Trainer trainer = CustomDPOTrainer( model=model, ref_model=ref_model, args=training_args, finetuning_args=finetuning_args, data_collator=data_collator, callbacks=callbacks, **dataset_module, **tokenizer_module, ) # Training if training_args.do_train: train_result = trainer.train(resume_from_checkpoint=training_args.resume_from_checkpoint) trainer.save_model() trainer.log_metrics("train", train_result.metrics) trainer.save_metrics("train", train_result.metrics) trainer.save_state() if trainer.is_world_process_zero() and finetuning_args.plot_loss: plot_loss(training_args.output_dir, keys=["loss", "eval_loss", "rewards/accuracies"]) # Evaluation if training_args.do_eval: metrics = trainer.evaluate(metric_key_prefix="eval") if id(model) == id(ref_model): # unable to compute rewards if reference model is the model itself remove_keys = [key for key in metrics.keys() if "rewards" in key] for key in remove_keys: metrics.pop(key) trainer.log_metrics("eval", metrics) trainer.save_metrics("eval", metrics) # Create model card create_modelcard_and_push(trainer, model_args, data_args, training_args, finetuning_args)