# Copyright 2024 the LlamaFactory team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import asdict, dataclass, field from typing import Any, Dict, Optional @dataclass class GeneratingArguments: r""" Arguments pertaining to specify the decoding parameters. """ do_sample: bool = field( default=True, metadata={"help": "Whether or not to use sampling, use greedy decoding otherwise."}, ) temperature: float = field( default=0.95, metadata={"help": "The value used to modulate the next token probabilities."}, ) top_p: float = field( default=0.7, metadata={ "help": "The smallest set of most probable tokens with probabilities that add up to top_p or higher are kept." }, ) top_k: int = field( default=50, metadata={"help": "The number of highest probability vocabulary tokens to keep for top-k filtering."}, ) num_beams: int = field( default=1, metadata={"help": "Number of beams for beam search. 1 means no beam search."}, ) max_length: int = field( default=1024, metadata={"help": "The maximum length the generated tokens can have. It can be overridden by max_new_tokens."}, ) max_new_tokens: int = field( default=1024, metadata={"help": "The maximum numbers of tokens to generate, ignoring the number of tokens in the prompt."}, ) repetition_penalty: float = field( default=1.0, metadata={"help": "The parameter for repetition penalty. 1.0 means no penalty."}, ) length_penalty: float = field( default=1.0, metadata={"help": "Exponential penalty to the length that is used with beam-based generation."}, ) default_system: Optional[str] = field( default=None, metadata={"help": "Default system message to use in chat completion."}, ) def to_dict(self) -> Dict[str, Any]: args = asdict(self) if args.get("max_new_tokens", -1) > 0: args.pop("max_length", None) else: args.pop("max_new_tokens", None) return args