# Copyright 2024 HuggingFace Inc. and the LlamaFactory team. # # This code is inspired by the HuggingFace's transformers library. # https://github.com/huggingface/transformers/blob/v4.40.0/examples/pytorch/language-modeling/run_clm.py # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import dataclass, field from typing import Literal, Optional @dataclass class DataArguments: r""" Arguments pertaining to what data we are going to input our model for training and evaluation. """ template: Optional[str] = field( default=None, metadata={"help": "Which template to use for constructing prompts in training and inference."}, ) dataset: Optional[str] = field( default=None, metadata={"help": "The name of dataset(s) to use for training. Use commas to separate multiple datasets."}, ) eval_dataset: Optional[str] = field( default=None, metadata={"help": "The name of dataset(s) to use for evaluation. Use commas to separate multiple datasets."}, ) dataset_dir: str = field( default="data", metadata={"help": "Path to the folder containing the datasets."}, ) cutoff_len: int = field( default=1024, metadata={"help": "The cutoff length of the tokenized inputs in the dataset."}, ) train_on_prompt: bool = field( default=False, metadata={"help": "Whether or not to disable the mask on the prompt."}, ) mask_history: bool = field( default=False, metadata={"help": "Whether or not to mask the history and train on the last turn only."}, ) streaming: bool = field( default=False, metadata={"help": "Enable dataset streaming."}, ) buffer_size: int = field( default=16384, metadata={"help": "Size of the buffer to randomly sample examples from in dataset streaming."}, ) mix_strategy: Literal["concat", "interleave_under", "interleave_over"] = field( default="concat", metadata={"help": "Strategy to use in dataset mixing (concat/interleave) (undersampling/oversampling)."}, ) interleave_probs: Optional[str] = field( default=None, metadata={"help": "Probabilities to sample data from datasets. Use commas to separate multiple datasets."}, ) overwrite_cache: bool = field( default=False, metadata={"help": "Overwrite the cached training and evaluation sets."}, ) preprocessing_batch_size: int = field( default=1000, metadata={"help": "The number of examples in one group in pre-processing."}, ) preprocessing_num_workers: Optional[int] = field( default=None, metadata={"help": "The number of processes to use for the pre-processing."}, ) max_samples: Optional[int] = field( default=None, metadata={"help": "For debugging purposes, truncate the number of examples for each dataset."}, ) eval_num_beams: Optional[int] = field( default=None, metadata={"help": "Number of beams to use for evaluation. This argument will be passed to `model.generate`"}, ) ignore_pad_token_for_loss: bool = field( default=True, metadata={"help": "Whether or not to ignore the tokens corresponding to the pad label in loss computation."}, ) val_size: float = field( default=0.0, metadata={"help": "Size of the development set, should be an integer or a float in range `[0,1)`."}, ) packing: Optional[bool] = field( default=None, metadata={"help": "Enable sequences packing in training. Will automatically enable in pre-training."}, ) neat_packing: bool = field( default=False, metadata={"help": "Enable sequence packing without cross-attention."}, ) tool_format: Optional[str] = field( default=None, metadata={"help": "Tool format to use for constructing function calling examples."}, ) tokenized_path: Optional[str] = field( default=None, metadata={"help": "Path to save or load the tokenized datasets."}, ) def __post_init__(self): def split_arg(arg): if isinstance(arg, str): return [item.strip() for item in arg.split(",")] return arg self.dataset = split_arg(self.dataset) self.eval_dataset = split_arg(self.eval_dataset) if self.dataset is None and self.val_size > 1e-6: raise ValueError("Cannot specify `val_size` if `dataset` is None.") if self.eval_dataset is not None and self.val_size > 1e-6: raise ValueError("Cannot specify `val_size` if `eval_dataset` is not None.") if self.interleave_probs is not None: if self.mix_strategy == "concat": raise ValueError("`interleave_probs` is only valid for interleaved mixing.") self.interleave_probs = list(map(float, split_arg(self.interleave_probs))) if self.dataset is not None and len(self.dataset) != len(self.interleave_probs): raise ValueError("The length of dataset and interleave probs should be identical.") if self.eval_dataset is not None and len(self.eval_dataset) != len(self.interleave_probs): raise ValueError("The length of eval dataset and interleave probs should be identical.") if self.streaming and self.val_size > 1e-6 and self.val_size < 1: raise ValueError("Streaming mode should have an integer val size.") if self.streaming and self.max_samples is not None: raise ValueError("`max_samples` is incompatible with `streaming`.") if self.mask_history and self.train_on_prompt: raise ValueError("`mask_history` is incompatible with `train_on_prompt`.")