# Copyright 2024 the LlamaFactory team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys from typing import TYPE_CHECKING, Dict, Literal, Optional, Sequence, Union import numpy as np from datasets import DatasetDict, load_dataset, load_from_disk from transformers.utils.versions import require_version from ..extras.constants import FILEEXT2TYPE from ..extras.logging import get_logger from ..extras.misc import has_tokenized_data from .aligner import align_dataset from .data_utils import merge_dataset, split_dataset from .parser import get_dataset_list from .preprocess import get_preprocess_and_print_func if TYPE_CHECKING: from datasets import Dataset, IterableDataset from transformers import PreTrainedTokenizer, ProcessorMixin, Seq2SeqTrainingArguments from ..hparams import DataArguments, ModelArguments from .data_utils import DatasetModule from .parser import DatasetAttr from .template import Template logger = get_logger(__name__) def _load_single_dataset( dataset_attr: "DatasetAttr", model_args: "ModelArguments", data_args: "DataArguments", training_args: "Seq2SeqTrainingArguments", ) -> Union["Dataset", "IterableDataset"]: r""" Loads a single dataset and aligns it to the standard format. """ logger.info("Loading dataset {}...".format(dataset_attr)) data_path, data_name, data_dir, data_files = None, None, None, None if dataset_attr.load_from in ["hf_hub", "ms_hub"]: data_path = dataset_attr.dataset_name data_name = dataset_attr.subset data_dir = dataset_attr.folder elif dataset_attr.load_from == "script": data_path = os.path.join(data_args.dataset_dir, dataset_attr.dataset_name) data_name = dataset_attr.subset data_dir = dataset_attr.folder elif dataset_attr.load_from == "file": data_files = [] local_path = os.path.join(data_args.dataset_dir, dataset_attr.dataset_name) if os.path.isdir(local_path): # is directory for file_name in os.listdir(local_path): data_files.append(os.path.join(local_path, file_name)) if data_path is None: data_path = FILEEXT2TYPE.get(file_name.split(".")[-1], None) elif data_path != FILEEXT2TYPE.get(file_name.split(".")[-1], None): raise ValueError("File types should be identical.") elif os.path.isfile(local_path): # is file data_files.append(local_path) data_path = FILEEXT2TYPE.get(local_path.split(".")[-1], None) else: raise ValueError("File {} not found.".format(local_path)) if data_path is None: raise ValueError("Allowed file types: {}.".format(",".join(FILEEXT2TYPE.keys()))) else: raise NotImplementedError("Unknown load type: {}.".format(dataset_attr.load_from)) if dataset_attr.load_from == "ms_hub": require_version("modelscope>=1.11.0", "To fix: pip install modelscope>=1.11.0") from modelscope import MsDataset from modelscope.utils.config_ds import MS_DATASETS_CACHE cache_dir = model_args.cache_dir or MS_DATASETS_CACHE dataset = MsDataset.load( dataset_name=data_path, subset_name=data_name, data_dir=data_dir, data_files=data_files, split=dataset_attr.split, cache_dir=cache_dir, token=model_args.ms_hub_token, use_streaming=(data_args.streaming and (dataset_attr.load_from != "file")), ) if isinstance(dataset, MsDataset): dataset = dataset.to_hf_dataset() else: dataset = load_dataset( path=data_path, name=data_name, data_dir=data_dir, data_files=data_files, split=dataset_attr.split, cache_dir=model_args.cache_dir, token=model_args.hf_hub_token, streaming=(data_args.streaming and (dataset_attr.load_from != "file")), trust_remote_code=True, ) if data_args.streaming and (dataset_attr.load_from == "file"): # faster than specifying streaming=True dataset = dataset.to_iterable_dataset() # TODO: add num shards parameter if dataset_attr.num_samples is not None and not data_args.streaming: target_num = dataset_attr.num_samples indexes = np.random.permutation(len(dataset))[:target_num] # all samples should be included target_num -= len(indexes) if target_num > 0: expand_indexes = np.random.choice(len(dataset), target_num) indexes = np.concatenate((indexes, expand_indexes), axis=0) assert len(indexes) == dataset_attr.num_samples, "Sample num mismatched." dataset = dataset.select(indexes) logger.info("Sampled {} examples from dataset {}.".format(dataset_attr.num_samples, dataset_attr)) if data_args.max_samples is not None: # truncate dataset max_samples = min(data_args.max_samples, len(dataset)) dataset = dataset.select(range(max_samples)) return align_dataset(dataset, dataset_attr, data_args, training_args) def _get_merged_dataset( dataset_names: Optional[Sequence[str]], model_args: "ModelArguments", data_args: "DataArguments", training_args: "Seq2SeqTrainingArguments", stage: Literal["pt", "sft", "rm", "ppo", "kto"], ) -> Optional[Union["Dataset", "IterableDataset"]]: r""" Gets the merged datasets in the standard format. """ if dataset_names is None: return None datasets = [] for dataset_attr in get_dataset_list(dataset_names, data_args.dataset_dir): if (stage == "rm" and dataset_attr.ranking is False) or (stage != "rm" and dataset_attr.ranking is True): raise ValueError("The dataset is not applicable in the current training stage.") datasets.append(_load_single_dataset(dataset_attr, model_args, data_args, training_args)) return merge_dataset(datasets, data_args, seed=training_args.seed) def _get_preprocessed_dataset( dataset: Optional[Union["Dataset", "IterableDataset"]], data_args: "DataArguments", training_args: "Seq2SeqTrainingArguments", stage: Literal["pt", "sft", "rm", "ppo", "kto"], template: "Template", tokenizer: "PreTrainedTokenizer", processor: Optional["ProcessorMixin"] = None, is_eval: bool = False, ) -> Optional[Union["Dataset", "IterableDataset"]]: r""" Preprocesses the dataset, including format checking and tokenization. """ if dataset is None: return None preprocess_func, print_function = get_preprocess_and_print_func( data_args, stage, template, tokenizer, processor, do_generate=(training_args.predict_with_generate and is_eval) ) column_names = list(next(iter(dataset)).keys()) kwargs = {} if not data_args.streaming: kwargs = dict( num_proc=data_args.preprocessing_num_workers, load_from_cache_file=(not data_args.overwrite_cache) or (training_args.local_process_index != 0), desc="Running tokenizer on dataset", ) dataset = dataset.map( preprocess_func, batched=True, batch_size=data_args.preprocessing_batch_size, remove_columns=column_names, **kwargs, ) if training_args.should_log: try: print("eval example:" if is_eval else "training example:") print_function(next(iter(dataset))) except StopIteration: if stage == "pt": raise RuntimeError("Cannot find sufficient samples, consider increasing dataset size.") else: raise RuntimeError("Cannot find valid samples, check `data/README.md` for the data format.") return dataset def get_dataset( template: "Template", model_args: "ModelArguments", data_args: "DataArguments", training_args: "Seq2SeqTrainingArguments", stage: Literal["pt", "sft", "rm", "ppo", "kto"], tokenizer: "PreTrainedTokenizer", processor: Optional["ProcessorMixin"] = None, ) -> "DatasetModule": r""" Gets the train dataset and optionally gets the evaluation dataset. """ # Load tokenized dataset if data_args.tokenized_path is not None: if has_tokenized_data(data_args.tokenized_path): logger.warning("Loading dataset from disk will ignore other data arguments.") dataset_dict: "DatasetDict" = load_from_disk(data_args.tokenized_path) logger.info("Loaded tokenized dataset from {}.".format(data_args.tokenized_path)) dataset_module: Dict[str, "Dataset"] = {} if "train" in dataset_dict: dataset_module["train_dataset"] = dataset_dict["train"] if "validation" in dataset_dict: dataset_module["eval_dataset"] = dataset_dict["validation"] if data_args.streaming: dataset_module = {k: v.to_iterable_dataset() for k, v in dataset_module.items()} return dataset_module if data_args.streaming: raise ValueError("Turn off `streaming` when saving dataset to disk.") # Load and preprocess dataset with training_args.main_process_first(desc="load dataset"): dataset = _get_merged_dataset(data_args.dataset, model_args, data_args, training_args, stage) eval_dataset = _get_merged_dataset(data_args.eval_dataset, model_args, data_args, training_args, stage) with training_args.main_process_first(desc="pre-process dataset"): dataset = _get_preprocessed_dataset( dataset, data_args, training_args, stage, template, tokenizer, processor, is_eval=False ) eval_dataset = _get_preprocessed_dataset( eval_dataset, data_args, training_args, stage, template, tokenizer, processor, is_eval=True ) if data_args.val_size > 1e-6: dataset_dict = split_dataset(dataset, data_args, seed=training_args.seed) else: dataset_dict = {} if dataset is not None: if data_args.streaming: dataset = dataset.shuffle(buffer_size=data_args.buffer_size, seed=training_args.seed) dataset_dict["train"] = dataset if eval_dataset is not None: if data_args.streaming: eval_dataset = eval_dataset.shuffle(buffer_size=data_args.buffer_size, seed=training_args.seed) dataset_dict["validation"] = eval_dataset dataset_dict = DatasetDict(dataset_dict) if data_args.tokenized_path is not None: if training_args.should_save: dataset_dict.save_to_disk(data_args.tokenized_path) logger.info("Tokenized dataset saved at {}.".format(data_args.tokenized_path)) logger.info("Please restart the training with `tokenized_path: {}`.".format(data_args.tokenized_path)) sys.exit(0) dataset_module = {} if "train" in dataset_dict: dataset_module["train_dataset"] = dataset_dict["train"] if "validation" in dataset_dict: dataset_module["eval_dataset"] = dataset_dict["validation"] return dataset_module