# Copyright 2024 the LlamaFactory team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from enum import Enum, unique from typing import TYPE_CHECKING, Dict, List, Optional, Sequence, Set, TypedDict, Union from datasets import DatasetDict, concatenate_datasets, interleave_datasets from ..extras.logging import get_logger if TYPE_CHECKING: from datasets import Dataset, IterableDataset from ..hparams import DataArguments logger = get_logger(__name__) SLOTS = Sequence[Union[str, Set[str], Dict[str, str]]] @unique class Role(str, Enum): USER = "user" ASSISTANT = "assistant" SYSTEM = "system" FUNCTION = "function" OBSERVATION = "observation" class DatasetModule(TypedDict): train_dataset: Optional[Union["Dataset", "IterableDataset"]] eval_dataset: Optional[Union["Dataset", "IterableDataset"]] def merge_dataset( all_datasets: List[Union["Dataset", "IterableDataset"]], data_args: "DataArguments", seed: int ) -> Union["Dataset", "IterableDataset"]: r""" Merges multiple datasets to a unified dataset. """ if len(all_datasets) == 1: return all_datasets[0] elif data_args.mix_strategy == "concat": if data_args.streaming: logger.warning("The samples between different datasets will not be mixed in streaming mode.") return concatenate_datasets(all_datasets) elif data_args.mix_strategy.startswith("interleave"): if not data_args.streaming: logger.warning("We recommend using `mix_strategy=concat` in non-streaming mode.") return interleave_datasets( datasets=all_datasets, probabilities=data_args.interleave_probs, seed=seed, stopping_strategy="first_exhausted" if data_args.mix_strategy.endswith("under") else "all_exhausted", ) else: raise ValueError("Unknown mixing strategy: {}.".format(data_args.mix_strategy)) def split_dataset( dataset: Union["Dataset", "IterableDataset"], data_args: "DataArguments", seed: int ) -> "DatasetDict": r""" Splits the dataset and returns a dataset dict containing train set and validation set. Supports both map dataset and iterable dataset. """ if data_args.streaming: dataset = dataset.shuffle(buffer_size=data_args.buffer_size, seed=seed) val_set = dataset.take(int(data_args.val_size)) train_set = dataset.skip(int(data_args.val_size)) return DatasetDict({"train": train_set, "validation": val_set}) else: val_size = int(data_args.val_size) if data_args.val_size > 1 else data_args.val_size dataset = dataset.train_test_split(test_size=val_size, seed=seed) return DatasetDict({"train": dataset["train"], "validation": dataset["test"]})