# Copyright 2024 the LlamaFactory team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from typing import TYPE_CHECKING import torch from peft import LoraConfig, LoraModel, PeftModel, TaskType, get_peft_model from transformers.integrations import is_deepspeed_zero3_enabled from transformers.modeling_utils import is_fsdp_enabled from ..extras.logging import get_logger from .model_utils.misc import find_all_linear_modules, find_expanded_modules from .model_utils.quantization import QuantizationMethod from .model_utils.unsloth import get_unsloth_peft_model, load_unsloth_peft_model from .model_utils.visual import get_forbidden_modules, patch_target_modules if TYPE_CHECKING: from transformers import PretrainedConfig, PreTrainedModel from ..hparams import FinetuningArguments, ModelArguments logger = get_logger(__name__) def _setup_full_tuning( model: "PreTrainedModel", finetuning_args: "FinetuningArguments", is_trainable: bool, cast_trainable_params_to_fp32: bool, ) -> None: if not is_trainable: return logger.info("Fine-tuning method: Full") forbidden_modules = get_forbidden_modules(model.config, finetuning_args) for name, param in model.named_parameters(): if not any(forbidden_module in name for forbidden_module in forbidden_modules): if cast_trainable_params_to_fp32: param.data = param.data.to(torch.float32) else: param.requires_grad_(False) def _setup_freeze_tuning( model: "PreTrainedModel", finetuning_args: "FinetuningArguments", is_trainable: bool, cast_trainable_params_to_fp32: bool, ) -> None: if not is_trainable: return logger.info("Fine-tuning method: Freeze") if hasattr(model.config, "text_config"): # composite models config = getattr(model.config, "text_config") else: config = model.config num_layers = ( getattr(config, "num_hidden_layers", None) or getattr(config, "num_layers", None) or getattr(config, "n_layer", None) ) if not num_layers: raise ValueError("Current model does not support freeze tuning.") if finetuning_args.use_llama_pro: if num_layers % finetuning_args.freeze_trainable_layers != 0: raise ValueError( "`num_layers` {} should be divisible by `num_layer_trainable` {}.".format( num_layers, finetuning_args.freeze_trainable_layers ) ) stride = num_layers // finetuning_args.freeze_trainable_layers trainable_layer_ids = range(stride - 1, num_layers + stride - 1, stride) elif finetuning_args.freeze_trainable_layers > 0: # fine-tuning the last n layers if num_layer_trainable > 0 trainable_layer_ids = range(max(0, num_layers - finetuning_args.freeze_trainable_layers), num_layers) else: # fine-tuning the first n layers if num_layer_trainable < 0 trainable_layer_ids = range(min(-finetuning_args.freeze_trainable_layers, num_layers)) hidden_modules = set() non_hidden_modules = set() for name, _ in model.named_parameters(): if ".0." in name: hidden_modules.add(name.split(".0.")[-1].split(".")[0]) elif ".1." in name: # MoD starts from layer 1 hidden_modules.add(name.split(".1.")[-1].split(".")[0]) if re.search(r"\.\d+\.", name) is None: non_hidden_modules.add(name.split(".")[-2]) trainable_layers = [] for module_name in finetuning_args.freeze_trainable_modules: if module_name != "all" and module_name not in hidden_modules: raise ValueError( "Module {} is not found, please choose from {}".format(module_name, ", ".join(hidden_modules)) ) for idx in trainable_layer_ids: trainable_layers.append(".{:d}.{}".format(idx, module_name if module_name != "all" else "")) if finetuning_args.freeze_extra_modules: for module_name in finetuning_args.freeze_extra_modules: if module_name not in non_hidden_modules: raise ValueError( "Module {} is not found, please choose from {}".format(module_name, ", ".join(non_hidden_modules)) ) trainable_layers.append(module_name) forbidden_modules = get_forbidden_modules(model.config, finetuning_args) for name, param in model.named_parameters(): if any(trainable_layer in name for trainable_layer in trainable_layers) and not any( forbidden_module in name for forbidden_module in forbidden_modules ): if cast_trainable_params_to_fp32: param.data = param.data.to(torch.float32) else: param.requires_grad_(False) logger.info("Set trainable layers: {}".format(",".join(trainable_layers))) def _setup_lora_tuning( config: "PretrainedConfig", model: "PreTrainedModel", model_args: "ModelArguments", finetuning_args: "FinetuningArguments", is_trainable: bool, cast_trainable_params_to_fp32: bool, ) -> "PeftModel": if is_trainable: logger.info("Fine-tuning method: {}".format("DoRA" if finetuning_args.use_dora else "LoRA")) adapter_to_resume = None if model_args.adapter_name_or_path is not None: is_mergeable = True if getattr(model, "quantization_method", None): # merge lora in quantized model is unstable assert len(model_args.adapter_name_or_path) == 1, "Quantized model only accepts a single adapter." is_mergeable = False if is_deepspeed_zero3_enabled(): assert len(model_args.adapter_name_or_path) == 1, "Cannot use multiple adapters in DeepSpeed ZeRO-3." is_mergeable = False if model_args.use_unsloth: assert len(model_args.adapter_name_or_path) == 1, "Unsloth model only accepts a single adapter." is_mergeable = False if (is_trainable and not finetuning_args.create_new_adapter) or (not is_mergeable): adapter_to_merge = model_args.adapter_name_or_path[:-1] adapter_to_resume = model_args.adapter_name_or_path[-1] else: adapter_to_merge = model_args.adapter_name_or_path init_kwargs = { "subfolder": model_args.adapter_folder, "offload_folder": model_args.offload_folder, "cache_dir": model_args.cache_dir, "revision": model_args.model_revision, "token": model_args.hf_hub_token, } for adapter in adapter_to_merge: model: "LoraModel" = PeftModel.from_pretrained(model, adapter, **init_kwargs) model = model.merge_and_unload() if len(adapter_to_merge) > 0: logger.info("Merged {} adapter(s).".format(len(adapter_to_merge))) if adapter_to_resume is not None: # resume lora training if model_args.use_unsloth: model = load_unsloth_peft_model(config, model_args, is_trainable=is_trainable) else: model = PeftModel.from_pretrained(model, adapter_to_resume, is_trainable=is_trainable, **init_kwargs) logger.info("Loaded adapter(s): {}".format(",".join(model_args.adapter_name_or_path))) if is_trainable and adapter_to_resume is None: # create new lora weights while training if len(finetuning_args.lora_target) == 1 and finetuning_args.lora_target[0] == "all": target_modules = find_all_linear_modules(model, finetuning_args.freeze_vision_tower) else: target_modules = finetuning_args.lora_target if finetuning_args.use_llama_pro: target_modules = find_expanded_modules(model, target_modules, finetuning_args.freeze_trainable_layers) target_modules = patch_target_modules(model.config, finetuning_args, target_modules) if ( finetuning_args.use_dora and getattr(model, "quantization_method", None) is not None and getattr(model, "quantization_method", None) != QuantizationMethod.BITS_AND_BYTES ): raise ValueError("DoRA is not compatible with PTQ-quantized models.") if model_args.resize_vocab and finetuning_args.additional_target is None: input_embeddings = model.get_input_embeddings() output_embeddings = model.get_output_embeddings() module_names = set() for name, module in model.named_modules(): if module in [input_embeddings, output_embeddings]: module_names.add(name.split(".")[-1]) finetuning_args.additional_target = module_names logger.warning("Vocab has been resized, add {} to trainable params.".format(",".join(module_names))) peft_kwargs = { "r": finetuning_args.lora_rank, "target_modules": target_modules, "lora_alpha": finetuning_args.lora_alpha, "lora_dropout": finetuning_args.lora_dropout, "use_rslora": finetuning_args.use_rslora, "use_dora": finetuning_args.use_dora, "modules_to_save": finetuning_args.additional_target, } if model_args.use_unsloth: model = get_unsloth_peft_model(model, model_args, peft_kwargs) else: if finetuning_args.pissa_init: if finetuning_args.pissa_iter == -1: logger.info("Using PiSSA initialization.") peft_kwargs["init_lora_weights"] = "pissa" else: logger.info("Using PiSSA initialization with FSVD steps {}.".format(finetuning_args.pissa_iter)) peft_kwargs["init_lora_weights"] = "pissa_niter_{}".format(finetuning_args.pissa_iter) lora_config = LoraConfig( task_type=TaskType.CAUSAL_LM, inference_mode=False, **peft_kwargs, ) model = get_peft_model(model, lora_config) if is_trainable and cast_trainable_params_to_fp32: for param in filter(lambda p: p.requires_grad, model.parameters()): param.data = param.data.to(torch.float32) return model def init_adapter( config: "PretrainedConfig", model: "PreTrainedModel", model_args: "ModelArguments", finetuning_args: "FinetuningArguments", is_trainable: bool, ) -> "PreTrainedModel": r""" Initializes the adapters. Support full-parameter, freeze and LoRA training. Note that the trainable parameters must be cast to float32. """ if is_trainable and getattr(model, "quantization_method", None) is not None: if finetuning_args.finetuning_type != "lora": raise ValueError("Quantized models can only be used for the LoRA tuning.") if finetuning_args.pissa_init: raise ValueError("Cannot initialize PiSSA adapter on quantized models.") # cast trainable parameters to float32 if: # 1. is_trainable and not pure_bf16 and not badam and quantization_bit is not None (qlora) # 2. is_trainable and not pure_bf16 and not badam and not zero3 and not fsdp (zero3 or fsdp already in fp32) cast_trainable_params_to_fp32 = False if not is_trainable: pass elif finetuning_args.pure_bf16 or finetuning_args.use_badam: logger.info("Pure bf16 / BAdam detected, remaining trainable params in half precision.") elif model_args.quantization_bit is None and (is_deepspeed_zero3_enabled() or is_fsdp_enabled()): logger.info("ZeRO3 / FSDP detected, remaining trainable params in float32.") else: logger.info("Upcasting trainable params to float32.") cast_trainable_params_to_fp32 = True if finetuning_args.finetuning_type == "full": _setup_full_tuning(model, finetuning_args, is_trainable, cast_trainable_params_to_fp32) elif finetuning_args.finetuning_type == "freeze": _setup_freeze_tuning(model, finetuning_args, is_trainable, cast_trainable_params_to_fp32) elif finetuning_args.finetuning_type == "lora": model = _setup_lora_tuning( config, model, model_args, finetuning_args, is_trainable, cast_trainable_params_to_fp32 ) else: raise NotImplementedError("Unknown finetuning type: {}.".format(finetuning_args.finetuning_type)) return model