|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import warnings |
|
from collections import defaultdict |
|
from contextlib import nullcontext |
|
from types import MethodType |
|
from typing import TYPE_CHECKING, Dict, Literal, Optional, Tuple, Union |
|
|
|
import torch |
|
from transformers import Trainer |
|
from trl import KTOTrainer |
|
from trl.trainer import disable_dropout_in_model |
|
from typing_extensions import override |
|
|
|
from ...extras.constants import IGNORE_INDEX |
|
from ..callbacks import SaveProcessorCallback |
|
from ..trainer_utils import create_custom_optimizer, create_custom_scheduler, get_batch_logps |
|
|
|
|
|
if TYPE_CHECKING: |
|
import torch.utils.data |
|
from transformers import PreTrainedModel, ProcessorMixin |
|
|
|
from ...hparams import FinetuningArguments |
|
|
|
|
|
class CustomKTOTrainer(KTOTrainer): |
|
def __init__( |
|
self, |
|
model: Union["PreTrainedModel", torch.nn.Module], |
|
ref_model: Optional[Union["PreTrainedModel", torch.nn.Module]], |
|
finetuning_args: "FinetuningArguments", |
|
processor: Optional["ProcessorMixin"], |
|
disable_dropout: bool = True, |
|
**kwargs, |
|
): |
|
if disable_dropout: |
|
disable_dropout_in_model(model) |
|
if ref_model is not None: |
|
disable_dropout_in_model(ref_model) |
|
|
|
self.finetuning_args = finetuning_args |
|
self.reference_free = False |
|
self.use_dpo_data_collator = True |
|
self.generate_during_eval = False |
|
self.label_pad_token_id = IGNORE_INDEX |
|
self.padding_value = 0 |
|
self.is_encoder_decoder = model.config.is_encoder_decoder |
|
self.precompute_ref_log_probs = False |
|
self._precomputed_train_ref_log_probs = False |
|
self._precomputed_eval_ref_log_probs = False |
|
self._peft_has_been_casted_to_bf16 = False |
|
|
|
self.ref_model = ref_model |
|
self._stored_metrics = defaultdict(lambda: defaultdict(list)) |
|
|
|
|
|
self.beta = finetuning_args.pref_beta |
|
self.desirable_weight = finetuning_args.kto_chosen_weight |
|
self.undesirable_weight = finetuning_args.kto_rejected_weight |
|
self.ftx_gamma = finetuning_args.pref_ftx |
|
|
|
Trainer.__init__(self, model=model, **kwargs) |
|
if not hasattr(self, "accelerator"): |
|
raise AttributeError("Please update `transformers`.") |
|
|
|
warnings.simplefilter("ignore") |
|
|
|
if ref_model is not None: |
|
if self.is_deepspeed_enabled: |
|
if not ( |
|
getattr(ref_model, "is_loaded_in_8bit", False) or getattr(ref_model, "is_loaded_in_4bit", False) |
|
): |
|
self.ref_model = self._prepare_deepspeed(self.ref_model) |
|
else: |
|
self.ref_model = self.accelerator.prepare_model(self.ref_model, evaluation_mode=True) |
|
self.ref_model.eval() |
|
|
|
if processor is not None: |
|
self.add_callback(SaveProcessorCallback(processor)) |
|
|
|
if finetuning_args.use_badam: |
|
from badam import BAdamCallback, clip_grad_norm_old_version |
|
|
|
self.accelerator.clip_grad_norm_ = MethodType(clip_grad_norm_old_version, self.accelerator) |
|
self.add_callback(BAdamCallback) |
|
|
|
@override |
|
def create_optimizer(self) -> "torch.optim.Optimizer": |
|
if self.optimizer is None: |
|
self.optimizer = create_custom_optimizer(self.model, self.args, self.finetuning_args) |
|
return super().create_optimizer() |
|
|
|
@override |
|
def create_scheduler( |
|
self, num_training_steps: int, optimizer: Optional["torch.optim.Optimizer"] = None |
|
) -> "torch.optim.lr_scheduler.LRScheduler": |
|
create_custom_scheduler(self.args, num_training_steps, optimizer) |
|
return super().create_scheduler(num_training_steps, optimizer) |
|
|
|
@override |
|
def _get_train_sampler(self) -> Optional["torch.utils.data.Sampler"]: |
|
r""" |
|
Replaces the sequential sampler of KTO Trainer created by trl with the random sampler. |
|
""" |
|
return Trainer._get_train_sampler(self) |
|
|
|
@override |
|
def forward( |
|
self, model: "PreTrainedModel", batch: Dict[str, "torch.Tensor"], prefix: Literal["", "kl_"] = "" |
|
) -> Tuple["torch.Tensor", "torch.Tensor"]: |
|
r""" |
|
Runs forward pass and computes the log probabilities. |
|
""" |
|
batch = {k: v.detach().clone() for k, v in batch.items()} |
|
model_inputs = { |
|
"input_ids": batch["{}input_ids".format(prefix)], |
|
"attention_mask": batch["{}attention_mask".format(prefix)], |
|
} |
|
if "{}token_type_ids".format(prefix) in batch: |
|
model_inputs["token_type_ids"] = batch["{}token_type_ids".format(prefix)] |
|
|
|
if "pixel_values" in batch: |
|
model_inputs["pixel_values"] = batch["pixel_values"] |
|
|
|
if "image_grid_thw" in batch: |
|
model_inputs["image_grid_thw"] = batch["image_grid_thw"] |
|
|
|
logits = model(**model_inputs, return_dict=True, use_cache=False).logits.to(torch.float32) |
|
logps, valid_length = get_batch_logps(logits=logits, labels=batch["{}labels".format(prefix)]) |
|
return logps, logps / valid_length |
|
|
|
@override |
|
def concatenated_forward( |
|
self, model: "PreTrainedModel", batch: Dict[str, "torch.Tensor"] |
|
) -> Tuple["torch.Tensor", "torch.Tensor", "torch.Tensor", "torch.Tensor"]: |
|
target_logps, target_logps_avg = self.forward(model, batch) |
|
with torch.no_grad(): |
|
kl_logps, _ = self.forward(model, batch, prefix="kl_") |
|
|
|
if len(target_logps) != len(batch["kto_tags"]): |
|
raise ValueError("Mismatched shape of inputs and labels.") |
|
|
|
chosen_logps = target_logps[batch["kto_tags"]] |
|
rejected_logps = target_logps[~batch["kto_tags"]] |
|
chosen_logps_avg = target_logps_avg[batch["kto_tags"]] |
|
return chosen_logps, rejected_logps, kl_logps, chosen_logps_avg |
|
|
|
@override |
|
def compute_reference_log_probs( |
|
self, model: "PreTrainedModel", batch: Dict[str, "torch.Tensor"] |
|
) -> Tuple["torch.Tensor", "torch.Tensor", "torch.Tensor"]: |
|
r""" |
|
Computes log probabilities of the reference model. |
|
""" |
|
if self.ref_model is None: |
|
ref_model = model |
|
ref_context = self.accelerator.unwrap_model(model).disable_adapter() |
|
else: |
|
ref_model = self.ref_model |
|
ref_context = nullcontext() |
|
|
|
with torch.no_grad(), ref_context: |
|
reference_chosen_logps, reference_rejected_logps, reference_kl_logps, _ = self.concatenated_forward( |
|
ref_model, batch |
|
) |
|
|
|
return reference_chosen_logps, reference_rejected_logps, reference_kl_logps |
|
|
|
@override |
|
def get_batch_loss_metrics( |
|
self, |
|
model: "PreTrainedModel", |
|
batch: Dict[str, "torch.Tensor"], |
|
) -> Tuple["torch.Tensor", Dict[str, "torch.Tensor"]]: |
|
r""" |
|
Computes the DPO loss and other metrics for the given batch of inputs for train or test. |
|
""" |
|
metrics = {} |
|
policy_chosen_logps, policy_rejected_logps, policy_kl_logps, policy_chosen_logps_avg = ( |
|
self.concatenated_forward(model, batch) |
|
) |
|
reference_chosen_logps, reference_rejected_logps, reference_kl_logps = self.compute_reference_log_probs( |
|
model, batch |
|
) |
|
losses, chosen_rewards, rejected_rewards, kl = self.kto_loss( |
|
policy_chosen_logps, |
|
policy_rejected_logps, |
|
policy_kl_logps, |
|
reference_chosen_logps, |
|
reference_rejected_logps, |
|
reference_kl_logps, |
|
) |
|
losses = losses.nanmean() |
|
|
|
if self.ftx_gamma > 1e-6 and len(policy_chosen_logps) > 0: |
|
sft_loss = -policy_chosen_logps_avg |
|
losses += self.ftx_gamma * sft_loss.nanmean() / len(policy_chosen_logps) * len(batch["labels"]) |
|
|
|
num_chosen = torch.Tensor([len(chosen_rewards)]).to(self.accelerator.device) |
|
num_rejected = torch.Tensor([len(rejected_rewards)]).to(self.accelerator.device) |
|
|
|
all_num_chosen = self.accelerator.gather(num_chosen).sum().item() |
|
all_num_rejected = self.accelerator.gather(num_rejected).sum().item() |
|
|
|
if all_num_chosen > 0: |
|
metrics["rewards/chosen_sum"] = self.accelerator.gather(chosen_rewards.nansum()).nansum().item() |
|
metrics["logps/chosen_sum"] = self.accelerator.gather(policy_chosen_logps.nansum()).nansum().item() |
|
metrics["count/chosen"] = all_num_chosen |
|
|
|
if all_num_rejected > 0: |
|
metrics["rewards/rejected_sum"] = self.accelerator.gather(rejected_rewards.nansum()).nansum().item() |
|
metrics["logps/rejected_sum"] = self.accelerator.gather(policy_rejected_logps.nansum()).nansum().item() |
|
metrics["count/rejected"] = all_num_rejected |
|
|
|
metrics["kl"] = kl.item() |
|
|
|
return losses, metrics |
|
|