|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import warnings |
|
from collections import defaultdict |
|
from contextlib import nullcontext |
|
from types import MethodType |
|
from typing import TYPE_CHECKING, Dict, Literal, Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
from transformers import Trainer |
|
from trl import DPOTrainer |
|
from trl.trainer import disable_dropout_in_model |
|
from typing_extensions import override |
|
|
|
from ...extras.constants import IGNORE_INDEX |
|
from ..callbacks import PissaConvertCallback, SaveProcessorCallback |
|
from ..trainer_utils import create_custom_optimizer, create_custom_scheduler, get_batch_logps |
|
|
|
|
|
if TYPE_CHECKING: |
|
from transformers import PreTrainedModel, ProcessorMixin |
|
|
|
from ...hparams import FinetuningArguments |
|
|
|
|
|
class CustomDPOTrainer(DPOTrainer): |
|
def __init__( |
|
self, |
|
model: Union["PreTrainedModel", torch.nn.Module], |
|
ref_model: Optional[Union["PreTrainedModel", torch.nn.Module]], |
|
finetuning_args: "FinetuningArguments", |
|
processor: Optional["ProcessorMixin"], |
|
disable_dropout: bool = True, |
|
**kwargs, |
|
): |
|
if disable_dropout: |
|
disable_dropout_in_model(model) |
|
if ref_model is not None: |
|
disable_dropout_in_model(ref_model) |
|
|
|
self.finetuning_args = finetuning_args |
|
self.f_divergence_type = "reverse_kl" |
|
self.reference_free = False |
|
self.use_dpo_data_collator = True |
|
self.generate_during_eval = False |
|
self.label_pad_token_id = IGNORE_INDEX |
|
self.padding_value = 0 |
|
self.is_encoder_decoder = model.config.is_encoder_decoder |
|
self.precompute_ref_log_probs = False |
|
self._precomputed_train_ref_log_probs = False |
|
self._precomputed_eval_ref_log_probs = False |
|
self._peft_has_been_casted_to_bf16 = False |
|
|
|
self.ref_model = ref_model |
|
self._stored_metrics = defaultdict(lambda: defaultdict(list)) |
|
|
|
|
|
self.beta = finetuning_args.pref_beta |
|
self.loss_type = finetuning_args.pref_loss |
|
self.ftx_gamma = finetuning_args.pref_ftx |
|
self.label_smoothing = finetuning_args.dpo_label_smoothing |
|
self.simpo_gamma = finetuning_args.simpo_gamma |
|
|
|
Trainer.__init__(self, model=model, **kwargs) |
|
if not hasattr(self, "accelerator"): |
|
raise AttributeError("Please update `transformers`.") |
|
|
|
warnings.simplefilter("ignore") |
|
|
|
if ref_model is not None: |
|
if self.is_deepspeed_enabled: |
|
if not ( |
|
getattr(ref_model, "is_loaded_in_8bit", False) or getattr(ref_model, "is_loaded_in_4bit", False) |
|
): |
|
self.ref_model = self._prepare_deepspeed(self.ref_model) |
|
else: |
|
self.ref_model = self.accelerator.prepare_model(self.ref_model, evaluation_mode=True) |
|
self.ref_model.eval() |
|
|
|
if processor is not None: |
|
self.add_callback(SaveProcessorCallback(processor)) |
|
|
|
if finetuning_args.pissa_convert: |
|
self.callback_handler.add_callback(PissaConvertCallback) |
|
|
|
if finetuning_args.use_badam: |
|
from badam import BAdamCallback, clip_grad_norm_old_version |
|
|
|
self.accelerator.clip_grad_norm_ = MethodType(clip_grad_norm_old_version, self.accelerator) |
|
self.add_callback(BAdamCallback) |
|
|
|
@override |
|
def create_optimizer(self) -> "torch.optim.Optimizer": |
|
if self.optimizer is None: |
|
self.optimizer = create_custom_optimizer(self.model, self.args, self.finetuning_args) |
|
return super().create_optimizer() |
|
|
|
@override |
|
def create_scheduler( |
|
self, num_training_steps: int, optimizer: Optional["torch.optim.Optimizer"] = None |
|
) -> "torch.optim.lr_scheduler.LRScheduler": |
|
create_custom_scheduler(self.args, num_training_steps, optimizer) |
|
return super().create_scheduler(num_training_steps, optimizer) |
|
|
|
def odds_ratio_loss(self, chosen_logps: "torch.Tensor", rejected_logps: "torch.Tensor") -> "torch.Tensor": |
|
r""" |
|
Computes ORPO's odds ratio (OR) loss for batched log probabilities of the policy model. |
|
""" |
|
log_odds = (chosen_logps - rejected_logps) - ( |
|
torch.log1p(-torch.exp(chosen_logps)) - torch.log1p(-torch.exp(rejected_logps)) |
|
) |
|
sft_loss = -chosen_logps |
|
odds_ratio_loss = -F.logsigmoid(log_odds) |
|
orpo_loss = sft_loss + self.beta * odds_ratio_loss |
|
return orpo_loss |
|
|
|
def simpo_loss(self, chosen_logps: "torch.Tensor", rejected_logps: "torch.Tensor") -> "torch.Tensor": |
|
r""" |
|
Computes SimPO loss for batched log probabilities of the policy model. |
|
""" |
|
pi_logratios = chosen_logps - rejected_logps |
|
gamma_logratios = self.simpo_gamma / self.beta |
|
logits = pi_logratios - gamma_logratios |
|
simpo_loss = -F.logsigmoid(self.beta * logits) |
|
return simpo_loss |
|
|
|
def compute_preference_loss( |
|
self, |
|
policy_chosen_logps: "torch.Tensor", |
|
policy_rejected_logps: "torch.Tensor", |
|
reference_chosen_logps: Optional["torch.Tensor"], |
|
reference_rejected_logps: Optional["torch.Tensor"], |
|
) -> Tuple["torch.Tensor", "torch.Tensor", "torch.Tensor"]: |
|
r""" |
|
Computes loss for preference learning. |
|
""" |
|
if not self.finetuning_args.use_ref_model: |
|
if self.loss_type == "orpo": |
|
losses = self.odds_ratio_loss(policy_chosen_logps, policy_rejected_logps) |
|
elif self.loss_type == "simpo": |
|
losses = self.simpo_loss(policy_chosen_logps, policy_rejected_logps) |
|
else: |
|
raise NotImplementedError("Unknown loss type: {}.".format(self.loss_type)) |
|
|
|
chosen_rewards = self.beta * policy_chosen_logps.to(self.accelerator.device).detach() |
|
rejected_rewards = self.beta * policy_rejected_logps.to(self.accelerator.device).detach() |
|
else: |
|
losses, chosen_rewards, rejected_rewards = self.dpo_loss( |
|
policy_chosen_logps, policy_rejected_logps, reference_chosen_logps, reference_rejected_logps |
|
) |
|
|
|
return losses, chosen_rewards, rejected_rewards |
|
|
|
@override |
|
def concatenated_forward( |
|
self, model: "PreTrainedModel", batch: Dict[str, "torch.Tensor"] |
|
) -> Tuple["torch.Tensor", "torch.Tensor", "torch.Tensor", "torch.Tensor", "torch.Tensor"]: |
|
r""" |
|
Computes the sum log probabilities of the labels under given logits if loss_type is not IPO, ORPO or SimPO. |
|
|
|
Otherwise the average log probabilities. |
|
""" |
|
if self.finetuning_args.use_ref_model: |
|
batch = {k: v.detach().clone() for k, v in batch.items()} |
|
|
|
all_logits: "torch.Tensor" = model(**batch, return_dict=True, use_cache=False).logits.to(torch.float32) |
|
all_logps, valid_length = get_batch_logps(logits=all_logits, labels=batch["labels"]) |
|
if self.loss_type in ["ipo", "orpo", "simpo"]: |
|
all_logps = all_logps / valid_length |
|
|
|
batch_size = batch["input_ids"].size(0) // 2 |
|
chosen_logps, rejected_logps = all_logps.split(batch_size, dim=0) |
|
chosen_logits, rejected_logits = all_logits.split(batch_size, dim=0) |
|
chosen_length, _ = valid_length.split(batch_size, dim=0) |
|
return chosen_logps, rejected_logps, chosen_logits, rejected_logits, chosen_logps / chosen_length |
|
|
|
@override |
|
def compute_reference_log_probs( |
|
self, model: "PreTrainedModel", batch: Dict[str, "torch.Tensor"] |
|
) -> Tuple[Optional["torch.Tensor"], Optional["torch.Tensor"]]: |
|
r""" |
|
Computes log probabilities of the reference model. |
|
""" |
|
if not self.finetuning_args.use_ref_model: |
|
return None, None |
|
|
|
if self.ref_model is None: |
|
ref_model = model |
|
ref_context = self.accelerator.unwrap_model(model).disable_adapter() |
|
else: |
|
ref_model = self.ref_model |
|
ref_context = nullcontext() |
|
|
|
with torch.no_grad(), ref_context: |
|
reference_chosen_logps, reference_rejected_logps, *_ = self.concatenated_forward(ref_model, batch) |
|
|
|
return reference_chosen_logps, reference_rejected_logps |
|
|
|
@override |
|
def get_batch_loss_metrics( |
|
self, |
|
model: "PreTrainedModel", |
|
batch: Dict[str, "torch.Tensor"], |
|
train_eval: Literal["train", "eval"] = "train", |
|
) -> Tuple["torch.Tensor", Dict[str, "torch.Tensor"]]: |
|
r""" |
|
Computes the DPO loss and other metrics for the given batch of inputs for train or test. |
|
""" |
|
metrics = {} |
|
( |
|
policy_chosen_logps, |
|
policy_rejected_logps, |
|
policy_chosen_logits, |
|
policy_rejected_logits, |
|
policy_chosen_logps_avg, |
|
) = self.concatenated_forward(model, batch) |
|
|
|
reference_chosen_logps, reference_rejected_logps = self.compute_reference_log_probs(model, batch) |
|
losses, chosen_rewards, rejected_rewards = self.compute_preference_loss( |
|
policy_chosen_logps, |
|
policy_rejected_logps, |
|
reference_chosen_logps, |
|
reference_rejected_logps, |
|
) |
|
sft_loss = -policy_chosen_logps_avg |
|
if self.ftx_gamma > 1e-6: |
|
losses += self.ftx_gamma * sft_loss |
|
|
|
reward_accuracies = (chosen_rewards > rejected_rewards).float() |
|
|
|
prefix = "eval_" if train_eval == "eval" else "" |
|
metrics["{}rewards/chosen".format(prefix)] = chosen_rewards.mean().cpu() |
|
metrics["{}rewards/rejected".format(prefix)] = rejected_rewards.mean().cpu() |
|
metrics["{}rewards/accuracies".format(prefix)] = reward_accuracies.mean().cpu() |
|
metrics["{}rewards/margins".format(prefix)] = (chosen_rewards - rejected_rewards).mean().cpu() |
|
metrics["{}logps/rejected".format(prefix)] = policy_rejected_logps.detach().mean().cpu() |
|
metrics["{}logps/chosen".format(prefix)] = policy_chosen_logps.detach().mean().cpu() |
|
metrics["{}logits/rejected".format(prefix)] = policy_rejected_logits.detach().mean().cpu() |
|
metrics["{}logits/chosen".format(prefix)] = policy_chosen_logits.detach().mean().cpu() |
|
if self.loss_type == "orpo": |
|
metrics["{}sft_loss".format(prefix)] = sft_loss.detach().mean().cpu() |
|
metrics["{}odds_ratio_loss".format(prefix)] = ((losses - sft_loss) / self.beta).detach().mean().cpu() |
|
|
|
return losses.mean(), metrics |
|
|