|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from dataclasses import asdict, dataclass, field |
|
from typing import Any, Dict, Optional |
|
|
|
|
|
@dataclass |
|
class GeneratingArguments: |
|
r""" |
|
Arguments pertaining to specify the decoding parameters. |
|
""" |
|
|
|
do_sample: bool = field( |
|
default=True, |
|
metadata={"help": "Whether or not to use sampling, use greedy decoding otherwise."}, |
|
) |
|
temperature: float = field( |
|
default=0.95, |
|
metadata={"help": "The value used to modulate the next token probabilities."}, |
|
) |
|
top_p: float = field( |
|
default=0.7, |
|
metadata={ |
|
"help": "The smallest set of most probable tokens with probabilities that add up to top_p or higher are kept." |
|
}, |
|
) |
|
top_k: int = field( |
|
default=50, |
|
metadata={"help": "The number of highest probability vocabulary tokens to keep for top-k filtering."}, |
|
) |
|
num_beams: int = field( |
|
default=1, |
|
metadata={"help": "Number of beams for beam search. 1 means no beam search."}, |
|
) |
|
max_length: int = field( |
|
default=1024, |
|
metadata={"help": "The maximum length the generated tokens can have. It can be overridden by max_new_tokens."}, |
|
) |
|
max_new_tokens: int = field( |
|
default=1024, |
|
metadata={"help": "The maximum numbers of tokens to generate, ignoring the number of tokens in the prompt."}, |
|
) |
|
repetition_penalty: float = field( |
|
default=1.0, |
|
metadata={"help": "The parameter for repetition penalty. 1.0 means no penalty."}, |
|
) |
|
length_penalty: float = field( |
|
default=1.0, |
|
metadata={"help": "Exponential penalty to the length that is used with beam-based generation."}, |
|
) |
|
default_system: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "Default system message to use in chat completion."}, |
|
) |
|
|
|
def to_dict(self) -> Dict[str, Any]: |
|
args = asdict(self) |
|
if args.get("max_new_tokens", -1) > 0: |
|
args.pop("max_length", None) |
|
else: |
|
args.pop("max_new_tokens", None) |
|
return args |
|
|