|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from dataclasses import dataclass, field |
|
from typing import Literal, Optional |
|
|
|
|
|
@dataclass |
|
class DataArguments: |
|
r""" |
|
Arguments pertaining to what data we are going to input our model for training and evaluation. |
|
""" |
|
|
|
template: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "Which template to use for constructing prompts in training and inference."}, |
|
) |
|
dataset: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "The name of dataset(s) to use for training. Use commas to separate multiple datasets."}, |
|
) |
|
eval_dataset: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "The name of dataset(s) to use for evaluation. Use commas to separate multiple datasets."}, |
|
) |
|
dataset_dir: str = field( |
|
default="data", |
|
metadata={"help": "Path to the folder containing the datasets."}, |
|
) |
|
cutoff_len: int = field( |
|
default=1024, |
|
metadata={"help": "The cutoff length of the tokenized inputs in the dataset."}, |
|
) |
|
train_on_prompt: bool = field( |
|
default=False, |
|
metadata={"help": "Whether or not to disable the mask on the prompt."}, |
|
) |
|
mask_history: bool = field( |
|
default=False, |
|
metadata={"help": "Whether or not to mask the history and train on the last turn only."}, |
|
) |
|
streaming: bool = field( |
|
default=False, |
|
metadata={"help": "Enable dataset streaming."}, |
|
) |
|
buffer_size: int = field( |
|
default=16384, |
|
metadata={"help": "Size of the buffer to randomly sample examples from in dataset streaming."}, |
|
) |
|
mix_strategy: Literal["concat", "interleave_under", "interleave_over"] = field( |
|
default="concat", |
|
metadata={"help": "Strategy to use in dataset mixing (concat/interleave) (undersampling/oversampling)."}, |
|
) |
|
interleave_probs: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "Probabilities to sample data from datasets. Use commas to separate multiple datasets."}, |
|
) |
|
overwrite_cache: bool = field( |
|
default=False, |
|
metadata={"help": "Overwrite the cached training and evaluation sets."}, |
|
) |
|
preprocessing_batch_size: int = field( |
|
default=1000, |
|
metadata={"help": "The number of examples in one group in pre-processing."}, |
|
) |
|
preprocessing_num_workers: Optional[int] = field( |
|
default=None, |
|
metadata={"help": "The number of processes to use for the pre-processing."}, |
|
) |
|
max_samples: Optional[int] = field( |
|
default=None, |
|
metadata={"help": "For debugging purposes, truncate the number of examples for each dataset."}, |
|
) |
|
eval_num_beams: Optional[int] = field( |
|
default=None, |
|
metadata={"help": "Number of beams to use for evaluation. This argument will be passed to `model.generate`"}, |
|
) |
|
ignore_pad_token_for_loss: bool = field( |
|
default=True, |
|
metadata={"help": "Whether or not to ignore the tokens corresponding to the pad label in loss computation."}, |
|
) |
|
val_size: float = field( |
|
default=0.0, |
|
metadata={"help": "Size of the development set, should be an integer or a float in range `[0,1)`."}, |
|
) |
|
packing: Optional[bool] = field( |
|
default=None, |
|
metadata={"help": "Enable sequences packing in training. Will automatically enable in pre-training."}, |
|
) |
|
neat_packing: bool = field( |
|
default=False, |
|
metadata={"help": "Enable sequence packing without cross-attention."}, |
|
) |
|
tool_format: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "Tool format to use for constructing function calling examples."}, |
|
) |
|
tokenized_path: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "Path to save or load the tokenized datasets."}, |
|
) |
|
|
|
def __post_init__(self): |
|
def split_arg(arg): |
|
if isinstance(arg, str): |
|
return [item.strip() for item in arg.split(",")] |
|
return arg |
|
|
|
self.dataset = split_arg(self.dataset) |
|
self.eval_dataset = split_arg(self.eval_dataset) |
|
|
|
if self.dataset is None and self.val_size > 1e-6: |
|
raise ValueError("Cannot specify `val_size` if `dataset` is None.") |
|
|
|
if self.eval_dataset is not None and self.val_size > 1e-6: |
|
raise ValueError("Cannot specify `val_size` if `eval_dataset` is not None.") |
|
|
|
if self.interleave_probs is not None: |
|
if self.mix_strategy == "concat": |
|
raise ValueError("`interleave_probs` is only valid for interleaved mixing.") |
|
|
|
self.interleave_probs = list(map(float, split_arg(self.interleave_probs))) |
|
if self.dataset is not None and len(self.dataset) != len(self.interleave_probs): |
|
raise ValueError("The length of dataset and interleave probs should be identical.") |
|
|
|
if self.eval_dataset is not None and len(self.eval_dataset) != len(self.interleave_probs): |
|
raise ValueError("The length of eval dataset and interleave probs should be identical.") |
|
|
|
if self.streaming and self.val_size > 1e-6 and self.val_size < 1: |
|
raise ValueError("Streaming mode should have an integer val size.") |
|
|
|
if self.streaming and self.max_samples is not None: |
|
raise ValueError("`max_samples` is incompatible with `streaming`.") |
|
|
|
if self.mask_history and self.train_on_prompt: |
|
raise ValueError("`mask_history` is incompatible with `train_on_prompt`.") |
|
|