|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from dataclasses import dataclass |
|
from typing import TYPE_CHECKING, Dict, List, Optional, Sequence, Tuple, Union |
|
|
|
from transformers.utils.versions import require_version |
|
from typing_extensions import override |
|
|
|
from ..extras.logging import get_logger |
|
from .data_utils import Role |
|
from .formatter import EmptyFormatter, FunctionFormatter, StringFormatter, ToolFormatter |
|
from .mm_plugin import get_mm_plugin |
|
|
|
|
|
if TYPE_CHECKING: |
|
from transformers import PreTrainedTokenizer |
|
|
|
from ..hparams import DataArguments |
|
from .formatter import SLOTS, Formatter |
|
from .mm_plugin import BasePlugin |
|
|
|
|
|
logger = get_logger(__name__) |
|
|
|
|
|
@dataclass |
|
class Template: |
|
format_user: "Formatter" |
|
format_assistant: "Formatter" |
|
format_system: "Formatter" |
|
format_function: "Formatter" |
|
format_observation: "Formatter" |
|
format_tools: "Formatter" |
|
format_separator: "Formatter" |
|
format_prefix: "Formatter" |
|
default_system: str |
|
stop_words: List[str] |
|
efficient_eos: bool |
|
replace_eos: bool |
|
replace_jinja_template: bool |
|
mm_plugin: "BasePlugin" |
|
|
|
def encode_oneturn( |
|
self, |
|
tokenizer: "PreTrainedTokenizer", |
|
messages: Sequence[Dict[str, str]], |
|
system: Optional[str] = None, |
|
tools: Optional[str] = None, |
|
) -> Tuple[List[int], List[int]]: |
|
r""" |
|
Returns a single pair of token ids representing prompt and response respectively. |
|
""" |
|
encoded_messages = self._encode(tokenizer, messages, system, tools) |
|
prompt_ids = [] |
|
for encoded_ids in encoded_messages[:-1]: |
|
prompt_ids += encoded_ids |
|
|
|
answer_ids = encoded_messages[-1] |
|
return prompt_ids, answer_ids |
|
|
|
def encode_multiturn( |
|
self, |
|
tokenizer: "PreTrainedTokenizer", |
|
messages: Sequence[Dict[str, str]], |
|
system: Optional[str] = None, |
|
tools: Optional[str] = None, |
|
) -> List[Tuple[List[int], List[int]]]: |
|
r""" |
|
Returns multiple pairs of token ids representing prompts and responses respectively. |
|
""" |
|
encoded_messages = self._encode(tokenizer, messages, system, tools) |
|
return [(encoded_messages[i], encoded_messages[i + 1]) for i in range(0, len(encoded_messages), 2)] |
|
|
|
def extract_tool(self, content: str) -> Union[str, List[Tuple[str, str]]]: |
|
r""" |
|
Extracts tool message. |
|
""" |
|
return self.format_tools.extract(content) |
|
|
|
def _encode( |
|
self, |
|
tokenizer: "PreTrainedTokenizer", |
|
messages: Sequence[Dict[str, str]], |
|
system: Optional[str], |
|
tools: Optional[str], |
|
) -> List[List[int]]: |
|
r""" |
|
Encodes formatted inputs to pairs of token ids. |
|
Turn 0: prefix + system + query resp |
|
Turn t: sep + query resp |
|
""" |
|
system = system or self.default_system |
|
encoded_messages = [] |
|
for i, message in enumerate(messages): |
|
elements = [] |
|
|
|
if i == 0: |
|
elements += self.format_prefix.apply() |
|
if system or tools: |
|
tool_text = self.format_tools.apply(content=tools)[0] if tools else "" |
|
elements += self.format_system.apply(content=(system + tool_text)) |
|
|
|
if i > 0 and i % 2 == 0: |
|
elements += self.format_separator.apply() |
|
|
|
if message["role"] == Role.USER.value: |
|
elements += self.format_user.apply(content=message["content"], idx=str(i // 2)) |
|
elif message["role"] == Role.ASSISTANT.value: |
|
elements += self.format_assistant.apply(content=message["content"]) |
|
elif message["role"] == Role.OBSERVATION.value: |
|
elements += self.format_observation.apply(content=message["content"]) |
|
elif message["role"] == Role.FUNCTION.value: |
|
elements += self.format_function.apply(content=message["content"]) |
|
else: |
|
raise NotImplementedError("Unexpected role: {}".format(message["role"])) |
|
|
|
encoded_messages.append(self._convert_elements_to_ids(tokenizer, elements)) |
|
|
|
return encoded_messages |
|
|
|
def _convert_elements_to_ids(self, tokenizer: "PreTrainedTokenizer", elements: "SLOTS") -> List[int]: |
|
r""" |
|
Converts elements to token ids. |
|
""" |
|
token_ids = [] |
|
for elem in elements: |
|
if isinstance(elem, str): |
|
if len(elem) != 0: |
|
token_ids += tokenizer.encode(elem, add_special_tokens=False) |
|
elif isinstance(elem, dict): |
|
token_ids += [tokenizer.convert_tokens_to_ids(elem.get("token"))] |
|
elif isinstance(elem, set): |
|
if "bos_token" in elem and tokenizer.bos_token_id is not None: |
|
token_ids += [tokenizer.bos_token_id] |
|
elif "eos_token" in elem and tokenizer.eos_token_id is not None: |
|
token_ids += [tokenizer.eos_token_id] |
|
else: |
|
raise ValueError("Input must be string, set[str] or dict[str, str], got {}".format(type(elem))) |
|
|
|
return token_ids |
|
|
|
|
|
@dataclass |
|
class Llama2Template(Template): |
|
@override |
|
def _encode( |
|
self, |
|
tokenizer: "PreTrainedTokenizer", |
|
messages: Sequence[Dict[str, str]], |
|
system: str, |
|
tools: str, |
|
) -> List[List[int]]: |
|
r""" |
|
Encodes formatted inputs to pairs of token ids. |
|
Turn 0: prefix + system + query resp |
|
Turn t: sep + query resp |
|
""" |
|
system = system or self.default_system |
|
encoded_messages = [] |
|
for i, message in enumerate(messages): |
|
elements = [] |
|
|
|
system_text = "" |
|
if i == 0: |
|
elements += self.format_prefix.apply() |
|
if system or tools: |
|
tool_text = self.format_tools.apply(content=tools)[0] if tools else "" |
|
system_text = self.format_system.apply(content=(system + tool_text))[0] |
|
|
|
if i > 0 and i % 2 == 0: |
|
elements += self.format_separator.apply() |
|
|
|
if message["role"] == Role.USER.value: |
|
elements += self.format_user.apply(content=system_text + message["content"]) |
|
elif message["role"] == Role.ASSISTANT.value: |
|
elements += self.format_assistant.apply(content=message["content"]) |
|
elif message["role"] == Role.OBSERVATION.value: |
|
elements += self.format_observation.apply(content=message["content"]) |
|
elif message["role"] == Role.FUNCTION.value: |
|
elements += self.format_function.apply(content=message["content"]) |
|
else: |
|
raise NotImplementedError("Unexpected role: {}".format(message["role"])) |
|
|
|
encoded_messages.append(self._convert_elements_to_ids(tokenizer, elements)) |
|
|
|
return encoded_messages |
|
|
|
|
|
TEMPLATES: Dict[str, "Template"] = {} |
|
|
|
|
|
def _register_template( |
|
name: str, |
|
format_user: Optional["Formatter"] = None, |
|
format_assistant: Optional["Formatter"] = None, |
|
format_system: Optional["Formatter"] = None, |
|
format_function: Optional["Formatter"] = None, |
|
format_observation: Optional["Formatter"] = None, |
|
format_tools: Optional["Formatter"] = None, |
|
format_separator: Optional["Formatter"] = None, |
|
format_prefix: Optional["Formatter"] = None, |
|
default_system: str = "", |
|
stop_words: Sequence[str] = [], |
|
efficient_eos: bool = False, |
|
replace_eos: bool = False, |
|
replace_jinja_template: bool = True, |
|
mm_plugin: "BasePlugin" = get_mm_plugin(name="base"), |
|
) -> None: |
|
r""" |
|
Registers a chat template. |
|
|
|
To add the following chat template: |
|
``` |
|
[HUMAN]: |
|
user prompt here |
|
[AI]: |
|
model response here |
|
|
|
[HUMAN]: |
|
user prompt here |
|
[AI]: |
|
model response here |
|
``` |
|
|
|
The corresponding code should be: |
|
``` |
|
_register_template( |
|
name="custom", |
|
format_user=StringFormatter(slots=["[HUMAN]:\n{{content}}\n[AI]:\n"]), |
|
format_separator=EmptyFormatter(slots=["\n\n"]), |
|
efficient_eos=True, |
|
) |
|
``` |
|
""" |
|
eos_slots = [] if efficient_eos else [{"eos_token"}] |
|
template_class = Llama2Template if name.startswith("llama2") else Template |
|
default_user_formatter = StringFormatter(slots=["{{content}}"]) |
|
default_assistant_formatter = StringFormatter(slots=["{{content}}"] + eos_slots) |
|
default_function_formatter = FunctionFormatter(slots=eos_slots, tool_format="default") |
|
default_tool_formatter = ToolFormatter(tool_format="default") |
|
default_separator_formatter = EmptyFormatter() |
|
default_prefix_formatter = EmptyFormatter() |
|
TEMPLATES[name] = template_class( |
|
format_user=format_user or default_user_formatter, |
|
format_assistant=format_assistant or default_assistant_formatter, |
|
format_system=format_system or default_user_formatter, |
|
format_function=format_function or default_function_formatter, |
|
format_observation=format_observation or format_user or default_user_formatter, |
|
format_tools=format_tools or default_tool_formatter, |
|
format_separator=format_separator or default_separator_formatter, |
|
format_prefix=format_prefix or default_prefix_formatter, |
|
default_system=default_system, |
|
stop_words=stop_words, |
|
efficient_eos=efficient_eos, |
|
replace_eos=replace_eos, |
|
replace_jinja_template=replace_jinja_template, |
|
mm_plugin=mm_plugin, |
|
) |
|
|
|
|
|
def _add_or_replace_eos_token(tokenizer: "PreTrainedTokenizer", eos_token: str) -> None: |
|
is_added = tokenizer.eos_token_id is None |
|
num_added_tokens = tokenizer.add_special_tokens({"eos_token": eos_token}) |
|
|
|
if is_added: |
|
logger.info("Add eos token: {}".format(tokenizer.eos_token)) |
|
else: |
|
logger.info("Replace eos token: {}".format(tokenizer.eos_token)) |
|
|
|
if num_added_tokens > 0: |
|
logger.warning("New tokens have been added, make sure `resize_vocab` is True.") |
|
|
|
|
|
def _jinja_escape(content: str) -> str: |
|
return content.replace("'", r"\'") |
|
|
|
|
|
def _convert_slots_to_jinja(slots: "SLOTS", tokenizer: "PreTrainedTokenizer", placeholder: str = "content") -> str: |
|
slot_items = [] |
|
for slot in slots: |
|
if isinstance(slot, str): |
|
slot_pieces = slot.split("{{content}}") |
|
if slot_pieces[0]: |
|
slot_items.append("'" + _jinja_escape(slot_pieces[0]) + "'") |
|
if len(slot_pieces) > 1: |
|
slot_items.append(placeholder) |
|
if slot_pieces[1]: |
|
slot_items.append("'" + _jinja_escape(slot_pieces[1]) + "'") |
|
elif isinstance(slot, set): |
|
if "bos_token" in slot and tokenizer.bos_token_id is not None: |
|
slot_items.append("'" + tokenizer.bos_token + "'") |
|
elif "eos_token" in slot and tokenizer.eos_token_id is not None: |
|
slot_items.append("'" + tokenizer.eos_token + "'") |
|
elif isinstance(slot, dict): |
|
raise ValueError("Dict is not supported.") |
|
|
|
return " + ".join(slot_items) |
|
|
|
|
|
def _get_jinja_template(template: "Template", tokenizer: "PreTrainedTokenizer") -> str: |
|
r""" |
|
Returns the jinja template. |
|
""" |
|
jinja_template = "" |
|
|
|
prefix = _convert_slots_to_jinja(template.format_prefix.apply(), tokenizer) |
|
if prefix: |
|
jinja_template += "{{ " + prefix + " }}" |
|
|
|
if template.default_system: |
|
jinja_template += "{% set system_message = '" + _jinja_escape(template.default_system) + "' %}" |
|
|
|
jinja_template += ( |
|
"{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}" |
|
"{% set system_message = messages[0]['content'] %}{% else %}{% set loop_messages = messages %}{% endif %}" |
|
) |
|
|
|
system_message = _convert_slots_to_jinja(template.format_system.apply(), tokenizer, placeholder="system_message") |
|
if not isinstance(template, Llama2Template): |
|
jinja_template += "{% if system_message is defined %}{{ " + system_message + " }}{% endif %}" |
|
|
|
jinja_template += "{% for message in loop_messages %}" |
|
jinja_template += "{% set content = message['content'] %}" |
|
if isinstance(template, Llama2Template): |
|
jinja_template += "{% if loop.index0 == 0 and system_message is defined %}" |
|
jinja_template += "{% set content = " + system_message + " + message['content'] %}" |
|
jinja_template += "{% endif %}" |
|
|
|
jinja_template += "{% if message['role'] == 'user' %}" |
|
user_message = _convert_slots_to_jinja(template.format_user.apply(), tokenizer) |
|
jinja_template += "{{ " + user_message + " }}" |
|
|
|
jinja_template += "{% elif message['role'] == 'assistant' %}" |
|
assistant_message = _convert_slots_to_jinja( |
|
template.format_assistant.apply() + template.format_separator.apply(), tokenizer |
|
) |
|
jinja_template += "{{ " + assistant_message + " }}" |
|
jinja_template += "{% endif %}" |
|
jinja_template += "{% endfor %}" |
|
return jinja_template |
|
|
|
|
|
def get_template_and_fix_tokenizer(tokenizer: "PreTrainedTokenizer", data_args: "DataArguments") -> "Template": |
|
r""" |
|
Gets chat template and fixes the tokenizer. |
|
""" |
|
if data_args.template in ["llava", "paligemma", "qwen2_vl"]: |
|
require_version( |
|
"transformers>=4.45.0.dev0", "To fix: pip install git+https://github.com/huggingface/transformers.git" |
|
) |
|
require_version("accelerate>=0.34.0", "To fix: pip install accelerate>=0.34.0") |
|
|
|
if data_args.template is None: |
|
template = TEMPLATES["empty"] |
|
else: |
|
template = TEMPLATES.get(data_args.template, None) |
|
if template is None: |
|
raise ValueError("Template {} does not exist.".format(data_args.template)) |
|
|
|
if data_args.train_on_prompt and template.efficient_eos: |
|
raise ValueError("Current template does not support `train_on_prompt`.") |
|
|
|
if data_args.tool_format is not None: |
|
logger.info("Using tool format: {}.".format(data_args.tool_format)) |
|
eos_slots = [] if template.efficient_eos else [{"eos_token"}] |
|
template.format_function = FunctionFormatter(slots=eos_slots, tool_format=data_args.tool_format) |
|
template.format_tools = ToolFormatter(tool_format=data_args.tool_format) |
|
|
|
stop_words = template.stop_words |
|
if template.replace_eos: |
|
if not stop_words: |
|
raise ValueError("Stop words are required to replace the EOS token.") |
|
|
|
_add_or_replace_eos_token(tokenizer, eos_token=stop_words[0]) |
|
stop_words = stop_words[1:] |
|
|
|
if tokenizer.eos_token_id is None: |
|
_add_or_replace_eos_token(tokenizer, eos_token="<|endoftext|>") |
|
|
|
if tokenizer.pad_token_id is None: |
|
tokenizer.pad_token = tokenizer.eos_token |
|
logger.info("Add pad token: {}".format(tokenizer.pad_token)) |
|
|
|
if stop_words: |
|
num_added_tokens = tokenizer.add_special_tokens( |
|
dict(additional_special_tokens=stop_words), replace_additional_special_tokens=False |
|
) |
|
logger.info("Add {} to stop words.".format(",".join(stop_words))) |
|
if num_added_tokens > 0: |
|
logger.warning("New tokens have been added, make sure `resize_vocab` is True.") |
|
|
|
if template.replace_jinja_template: |
|
try: |
|
tokenizer.chat_template = _get_jinja_template(template, tokenizer) |
|
except ValueError: |
|
logger.info("Cannot add this chat template to tokenizer.") |
|
|
|
return template |
|
|
|
|
|
_register_template( |
|
name="alpaca", |
|
format_user=StringFormatter(slots=["### Instruction:\n{{content}}\n\n### Response:\n"]), |
|
format_separator=EmptyFormatter(slots=["\n\n"]), |
|
default_system=( |
|
"Below is an instruction that describes a task. " |
|
"Write a response that appropriately completes the request.\n\n" |
|
), |
|
) |
|
|
|
|
|
_register_template( |
|
name="aquila", |
|
format_user=StringFormatter(slots=["Human: {{content}}###Assistant:"]), |
|
format_separator=EmptyFormatter(slots=["###"]), |
|
default_system=( |
|
"A chat between a curious human and an artificial intelligence assistant. " |
|
"The assistant gives helpful, detailed, and polite answers to the human's questions." |
|
), |
|
stop_words=["</s>"], |
|
efficient_eos=True, |
|
) |
|
|
|
|
|
_register_template( |
|
name="atom", |
|
format_user=StringFormatter( |
|
slots=[{"bos_token"}, "Human: {{content}}\n", {"eos_token"}, {"bos_token"}, "Assistant:"] |
|
), |
|
format_assistant=StringFormatter(slots=["{{content}}\n", {"eos_token"}]), |
|
) |
|
|
|
|
|
_register_template( |
|
name="baichuan", |
|
format_user=StringFormatter(slots=[{"token": "<reserved_102>"}, "{{content}}", {"token": "<reserved_103>"}]), |
|
efficient_eos=True, |
|
) |
|
|
|
|
|
_register_template( |
|
name="baichuan2", |
|
format_user=StringFormatter(slots=["<reserved_106>{{content}}<reserved_107>"]), |
|
efficient_eos=True, |
|
) |
|
|
|
|
|
_register_template( |
|
name="belle", |
|
format_user=StringFormatter(slots=["Human: {{content}}\n\nBelle: "]), |
|
format_separator=EmptyFormatter(slots=["\n\n"]), |
|
format_prefix=EmptyFormatter(slots=[{"bos_token"}]), |
|
) |
|
|
|
|
|
_register_template( |
|
name="bluelm", |
|
format_user=StringFormatter(slots=[{"token": "[|Human|]:"}, "{{content}}", {"token": "[|AI|]:"}]), |
|
) |
|
|
|
|
|
_register_template( |
|
name="breeze", |
|
format_user=StringFormatter(slots=["[INST] {{content}} [/INST] "]), |
|
format_prefix=EmptyFormatter(slots=[{"bos_token"}]), |
|
efficient_eos=True, |
|
) |
|
|
|
|
|
_register_template( |
|
name="chatglm2", |
|
format_user=StringFormatter(slots=["[Round {{idx}}]\n\n问:{{content}}\n\n答:"]), |
|
format_separator=EmptyFormatter(slots=["\n\n"]), |
|
format_prefix=EmptyFormatter(slots=[{"token": "[gMASK]"}, {"token": "sop"}]), |
|
efficient_eos=True, |
|
) |
|
|
|
|
|
_register_template( |
|
name="chatglm3", |
|
format_user=StringFormatter(slots=[{"token": "<|user|>"}, "\n", "{{content}}", {"token": "<|assistant|>"}]), |
|
format_assistant=StringFormatter(slots=["\n", "{{content}}"]), |
|
format_system=StringFormatter(slots=[{"token": "<|system|>"}, "\n", "{{content}}"]), |
|
format_function=FunctionFormatter(slots=[], tool_format="glm4"), |
|
format_observation=StringFormatter( |
|
slots=[{"token": "<|observation|>"}, "\n", "{{content}}", {"token": "<|assistant|>"}] |
|
), |
|
format_tools=ToolFormatter(tool_format="glm4"), |
|
format_prefix=EmptyFormatter(slots=[{"token": "[gMASK]"}, {"token": "sop"}]), |
|
stop_words=["<|user|>", "<|observation|>"], |
|
efficient_eos=True, |
|
) |
|
|
|
|
|
_register_template( |
|
name="chatml", |
|
format_user=StringFormatter(slots=["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]), |
|
format_system=StringFormatter(slots=["<|im_start|>system\n{{content}}<|im_end|>\n"]), |
|
format_observation=StringFormatter(slots=["<|im_start|>tool\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]), |
|
format_separator=EmptyFormatter(slots=["\n"]), |
|
stop_words=["<|im_end|>", "<|im_start|>"], |
|
replace_eos=True, |
|
) |
|
|
|
|
|
_register_template( |
|
name="chatml_de", |
|
format_user=StringFormatter(slots=["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]), |
|
format_system=StringFormatter(slots=["<|im_start|>system\n{{content}}<|im_end|>\n"]), |
|
format_observation=StringFormatter(slots=["<|im_start|>tool\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]), |
|
format_separator=EmptyFormatter(slots=["\n"]), |
|
default_system="Du bist ein freundlicher und hilfsbereiter KI-Assistent.", |
|
stop_words=["<|im_end|>", "<|im_start|>"], |
|
replace_eos=True, |
|
) |
|
|
|
|
|
_register_template( |
|
name="codegeex2", |
|
format_prefix=EmptyFormatter(slots=[{"token": "[gMASK]"}, {"token": "sop"}]), |
|
) |
|
|
|
|
|
_register_template( |
|
name="codegeex4", |
|
format_user=StringFormatter(slots=["<|user|>\n{{content}}<|assistant|>\n"]), |
|
format_system=StringFormatter(slots=["<|system|>\n{{content}}"]), |
|
format_function=FunctionFormatter(slots=[], tool_format="glm4"), |
|
format_observation=StringFormatter(slots=["<|observation|>\n{{content}}<|assistant|>\n"]), |
|
format_tools=ToolFormatter(tool_format="glm4"), |
|
format_prefix=EmptyFormatter(slots=["[gMASK]<sop>"]), |
|
default_system=( |
|
"你是一位智能编程助手,你叫CodeGeeX。你会为用户回答关于编程、代码、计算机方面的任何问题," |
|
"并提供格式规范、可以执行、准确安全的代码,并在必要时提供详细的解释。" |
|
), |
|
stop_words=["<|user|>", "<|observation|>"], |
|
efficient_eos=True, |
|
) |
|
|
|
|
|
_register_template( |
|
name="cohere", |
|
format_user=StringFormatter( |
|
slots=[ |
|
( |
|
"<|START_OF_TURN_TOKEN|><|USER_TOKEN|>{{content}}<|END_OF_TURN_TOKEN|>" |
|
"<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>" |
|
) |
|
] |
|
), |
|
format_system=StringFormatter(slots=["<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>{{content}}<|END_OF_TURN_TOKEN|>"]), |
|
format_prefix=EmptyFormatter(slots=[{"bos_token"}]), |
|
) |
|
|
|
|
|
_register_template( |
|
name="cpm", |
|
format_user=StringFormatter(slots=["<用户>{{content}}<AI>"]), |
|
format_prefix=EmptyFormatter(slots=[{"bos_token"}]), |
|
) |
|
|
|
|
|
_register_template( |
|
name="cpm3", |
|
format_user=StringFormatter(slots=["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]), |
|
format_system=StringFormatter(slots=["<|im_start|>system\n{{content}}<|im_end|>\n"]), |
|
format_prefix=EmptyFormatter(slots=[{"bos_token"}]), |
|
stop_words=["<|im_end|>"], |
|
) |
|
|
|
|
|
_register_template( |
|
name="dbrx", |
|
format_user=StringFormatter(slots=["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]), |
|
format_system=StringFormatter(slots=["<|im_start|>system\n{{content}}<|im_end|>\n"]), |
|
format_observation=StringFormatter(slots=["<|im_start|>tool\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]), |
|
format_separator=EmptyFormatter(slots=["\n"]), |
|
default_system=( |
|
"You are DBRX, created by Databricks. You were last updated in December 2023. " |
|
"You answer questions based on information available up to that point.\n" |
|
"YOU PROVIDE SHORT RESPONSES TO SHORT QUESTIONS OR STATEMENTS, but provide thorough " |
|
"responses to more complex and open-ended questions.\nYou assist with various tasks, " |
|
"from writing to coding (using markdown for code blocks — remember to use ``` with " |
|
"code, JSON, and tables).\n(You do not have real-time data access or code execution " |
|
"capabilities. You avoid stereotyping and provide balanced perspectives on " |
|
"controversial topics. You do not provide song lyrics, poems, or news articles and " |
|
"do not divulge details of your training data.)\nThis is your system prompt, " |
|
"guiding your responses. Do not reference it, just respond to the user. If you find " |
|
"yourself talking about this message, stop. You should be responding appropriately " |
|
"and usually that means not mentioning this.\nYOU DO NOT MENTION ANY OF THIS INFORMATION " |
|
"ABOUT YOURSELF UNLESS THE INFORMATION IS DIRECTLY PERTINENT TO THE USER'S QUERY." |
|
), |
|
stop_words=["<|im_end|>"], |
|
replace_eos=True, |
|
) |
|
|
|
|
|
_register_template( |
|
name="deepseek", |
|
format_user=StringFormatter(slots=["User: {{content}}\n\nAssistant:"]), |
|
format_system=StringFormatter(slots=["{{content}}\n\n"]), |
|
format_prefix=EmptyFormatter(slots=[{"bos_token"}]), |
|
) |
|
|
|
|
|
_register_template( |
|
name="deepseekcoder", |
|
format_user=StringFormatter(slots=["### Instruction:\n{{content}}\n### Response:"]), |
|
format_assistant=StringFormatter(slots=["\n{{content}}\n<|EOT|>"]), |
|
format_separator=EmptyFormatter(slots=["\n"]), |
|
format_prefix=EmptyFormatter(slots=[{"bos_token"}]), |
|
default_system=( |
|
"You are an AI programming assistant, utilizing the DeepSeek Coder model, " |
|
"developed by DeepSeek Company, and you only answer questions related to computer science. " |
|
"For politically sensitive questions, security and privacy issues, " |
|
"and other non-computer science questions, you will refuse to answer.\n" |
|
), |
|
) |
|
|
|
|
|
_register_template( |
|
name="default", |
|
format_user=StringFormatter(slots=["Human: {{content}}\nAssistant:"]), |
|
format_system=StringFormatter(slots=["{{content}}\n"]), |
|
format_separator=EmptyFormatter(slots=["\n"]), |
|
) |
|
|
|
|
|
_register_template( |
|
name="empty", |
|
efficient_eos=True, |
|
) |
|
|
|
|
|
_register_template( |
|
name="exaone", |
|
format_user=StringFormatter(slots=["[|user|]{{content}}\n[|assistant|]"]), |
|
format_system=StringFormatter(slots=["[|system|]{{content}}[|endofturn|]\n"]), |
|
format_separator=EmptyFormatter(slots=["\n"]), |
|
) |
|
|
|
|
|
_register_template( |
|
name="falcon", |
|
format_user=StringFormatter(slots=["User: {{content}}\nFalcon:"]), |
|
format_separator=EmptyFormatter(slots=["\n"]), |
|
efficient_eos=True, |
|
) |
|
|
|
|
|
_register_template( |
|
name="fewshot", |
|
format_separator=EmptyFormatter(slots=["\n\n"]), |
|
efficient_eos=True, |
|
) |
|
|
|
|
|
_register_template( |
|
name="gemma", |
|
format_user=StringFormatter(slots=["<start_of_turn>user\n{{content}}<end_of_turn>\n<start_of_turn>model\n"]), |
|
format_observation=StringFormatter( |
|
slots=["<start_of_turn>tool\n{{content}}<end_of_turn>\n<start_of_turn>model\n"] |
|
), |
|
format_separator=EmptyFormatter(slots=["<end_of_turn>\n"]), |
|
format_prefix=EmptyFormatter(slots=[{"bos_token"}]), |
|
efficient_eos=True, |
|
replace_jinja_template=False, |
|
) |
|
|
|
|
|
_register_template( |
|
name="glm4", |
|
format_user=StringFormatter(slots=["<|user|>\n{{content}}<|assistant|>"]), |
|
format_assistant=StringFormatter(slots=["\n{{content}}"]), |
|
format_system=StringFormatter(slots=["<|system|>\n{{content}}"]), |
|
format_function=FunctionFormatter(slots=[], tool_format="glm4"), |
|
format_observation=StringFormatter(slots=["<|observation|>\n{{content}}<|assistant|>"]), |
|
format_tools=ToolFormatter(tool_format="glm4"), |
|
format_prefix=EmptyFormatter(slots=["[gMASK]<sop>"]), |
|
stop_words=["<|user|>", "<|observation|>"], |
|
efficient_eos=True, |
|
) |
|
|
|
|
|
_register_template( |
|
name="intern", |
|
format_user=StringFormatter(slots=["<|User|>:{{content}}\n<|Bot|>:"]), |
|
format_system=StringFormatter(slots=["<|System|>:{{content}}\n"]), |
|
format_separator=EmptyFormatter(slots=["<eoa>\n"]), |
|
format_prefix=EmptyFormatter(slots=[{"bos_token"}]), |
|
stop_words=["<eoa>"], |
|
efficient_eos=True, |
|
) |
|
|
|
|
|
_register_template( |
|
name="intern2", |
|
format_user=StringFormatter(slots=["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]), |
|
format_system=StringFormatter(slots=["<|im_start|>system\n{{content}}<|im_end|>\n"]), |
|
format_separator=EmptyFormatter(slots=["<|im_end|>\n"]), |
|
format_prefix=EmptyFormatter(slots=[{"bos_token"}]), |
|
stop_words=["<|im_end|>"], |
|
efficient_eos=True, |
|
) |
|
|
|
|
|
_register_template( |
|
name="llama2", |
|
format_user=StringFormatter(slots=[{"bos_token"}, "[INST] {{content}} [/INST]"]), |
|
format_system=StringFormatter(slots=["<<SYS>>\n{{content}}\n<</SYS>>\n\n"]), |
|
) |
|
|
|
|
|
_register_template( |
|
name="llama2_zh", |
|
format_user=StringFormatter(slots=[{"bos_token"}, "[INST] {{content}} [/INST]"]), |
|
format_system=StringFormatter(slots=["<<SYS>>\n{{content}}\n<</SYS>>\n\n"]), |
|
default_system="You are a helpful assistant. 你是一个乐于助人的助手。", |
|
) |
|
|
|
|
|
_register_template( |
|
name="llama3", |
|
format_user=StringFormatter( |
|
slots=[ |
|
( |
|
"<|start_header_id|>user<|end_header_id|>\n\n{{content}}<|eot_id|>" |
|
"<|start_header_id|>assistant<|end_header_id|>\n\n" |
|
) |
|
] |
|
), |
|
format_system=StringFormatter(slots=["<|start_header_id|>system<|end_header_id|>\n\n{{content}}<|eot_id|>"]), |
|
format_observation=StringFormatter( |
|
slots=[ |
|
( |
|
"<|start_header_id|>tool<|end_header_id|>\n\n{{content}}<|eot_id|>" |
|
"<|start_header_id|>assistant<|end_header_id|>\n\n" |
|
) |
|
] |
|
), |
|
format_prefix=EmptyFormatter(slots=[{"bos_token"}]), |
|
stop_words=["<|eot_id|>"], |
|
replace_eos=True, |
|
replace_jinja_template=False, |
|
) |
|
|
|
|
|
_register_template( |
|
name="llava", |
|
format_user=StringFormatter(slots=["USER: {{content}} ASSISTANT:"]), |
|
default_system=( |
|
"A chat between a curious user and an artificial intelligence assistant. " |
|
"The assistant gives helpful, detailed, and polite answers to the user's questions." |
|
), |
|
mm_plugin=get_mm_plugin(name="llava", image_token="<image>"), |
|
) |
|
|
|
|
|
_register_template( |
|
name="llava_next", |
|
format_user=StringFormatter(slots=["USER: {{content}} ASSISTANT:"]), |
|
default_system=( |
|
"A chat between a curious user and an artificial intelligence assistant. " |
|
"The assistant gives helpful, detailed, and polite answers to the user's questions." |
|
), |
|
mm_plugin=get_mm_plugin(name="llava_next", image_token="<image>"), |
|
) |
|
|
|
|
|
_register_template( |
|
name="llava_next_llama3", |
|
format_user=StringFormatter( |
|
slots=[ |
|
( |
|
"<|start_header_id|>user<|end_header_id|>\n\n{{content}}<|eot_id|>" |
|
"<|start_header_id|>assistant<|end_header_id|>\n\n" |
|
) |
|
] |
|
), |
|
format_system=StringFormatter(slots=["<|start_header_id|>system<|end_header_id|>\n\n{{content}}<|eot_id|>"]), |
|
format_observation=StringFormatter( |
|
slots=[ |
|
( |
|
"<|start_header_id|>tool<|end_header_id|>\n\n{{content}}<|eot_id|>" |
|
"<|start_header_id|>assistant<|end_header_id|>\n\n" |
|
) |
|
] |
|
), |
|
format_prefix=EmptyFormatter(slots=[{"bos_token"}]), |
|
stop_words=["<|eot_id|>"], |
|
replace_eos=True, |
|
replace_jinja_template=False, |
|
mm_plugin=get_mm_plugin(name="llava_next", image_token="<image>"), |
|
) |
|
|
|
|
|
_register_template( |
|
name="llava_next_mistral", |
|
format_user=StringFormatter(slots=["[INST] {{content}} [/INST]"]), |
|
format_prefix=EmptyFormatter(slots=[{"bos_token"}]), |
|
mm_plugin=get_mm_plugin(name="llava_next", image_token="<image>"), |
|
) |
|
|
|
|
|
_register_template( |
|
name="llava_next_qwen", |
|
format_user=StringFormatter(slots=["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]), |
|
format_system=StringFormatter(slots=["<|im_start|>system\n{{content}}<|im_end|>\n"]), |
|
format_observation=StringFormatter(slots=["<|im_start|>tool\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]), |
|
format_separator=EmptyFormatter(slots=["\n"]), |
|
default_system="You are a helpful assistant.", |
|
stop_words=["<|im_end|>"], |
|
replace_eos=True, |
|
replace_jinja_template=False, |
|
mm_plugin=get_mm_plugin(name="llava_next", image_token="<image>"), |
|
) |
|
|
|
|
|
_register_template( |
|
name="llava_next_yi", |
|
format_user=StringFormatter(slots=["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]), |
|
format_system=StringFormatter(slots=["<|im_start|>system\n{{content}}<|im_end|>\n"]), |
|
format_separator=EmptyFormatter(slots=["\n"]), |
|
stop_words=["<|im_end|>"], |
|
replace_eos=True, |
|
mm_plugin=get_mm_plugin(name="llava_next", image_token="<image>"), |
|
) |
|
|
|
|
|
_register_template( |
|
name="llava_next_video", |
|
format_user=StringFormatter(slots=["USER: {{content}} ASSISTANT:"]), |
|
default_system=( |
|
"A chat between a curious user and an artificial intelligence assistant. " |
|
"The assistant gives helpful, detailed, and polite answers to the user's questions." |
|
), |
|
mm_plugin=get_mm_plugin(name="llava_next_video", image_token="<image>", video_token="<video>"), |
|
) |
|
|
|
|
|
_register_template( |
|
name="llava_next_video_mistral", |
|
format_user=StringFormatter(slots=["[INST] {{content}} [/INST]"]), |
|
format_prefix=EmptyFormatter(slots=[{"bos_token"}]), |
|
mm_plugin=get_mm_plugin(name="llava_next_video", image_token="<image>", video_token="<video>"), |
|
) |
|
|
|
|
|
_register_template( |
|
name="llava_next_video_yi", |
|
format_user=StringFormatter(slots=["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]), |
|
format_system=StringFormatter(slots=["<|im_start|>system\n{{content}}<|im_end|>\n"]), |
|
format_separator=EmptyFormatter(slots=["\n"]), |
|
stop_words=["<|im_end|>"], |
|
replace_eos=True, |
|
mm_plugin=get_mm_plugin(name="llava_next_video", image_token="<image>", video_token="<video>"), |
|
) |
|
|
|
|
|
_register_template( |
|
name="mistral", |
|
format_user=StringFormatter(slots=["[INST] {{content}} [/INST]"]), |
|
format_prefix=EmptyFormatter(slots=[{"bos_token"}]), |
|
) |
|
|
|
|
|
_register_template( |
|
name="olmo", |
|
format_user=StringFormatter(slots=["<|user|>\n{{content}}<|assistant|>\n"]), |
|
format_prefix=EmptyFormatter(slots=[{"eos_token"}]), |
|
) |
|
|
|
|
|
_register_template( |
|
name="openchat", |
|
format_user=StringFormatter(slots=["GPT4 Correct User: {{content}}", {"eos_token"}, "GPT4 Correct Assistant:"]), |
|
format_prefix=EmptyFormatter(slots=[{"bos_token"}]), |
|
) |
|
|
|
|
|
_register_template( |
|
name="openchat-3.6", |
|
format_user=StringFormatter( |
|
slots=[ |
|
( |
|
"<|start_header_id|>GPT4 Correct User<|end_header_id|>\n\n{{content}}<|eot_id|>" |
|
"<|start_header_id|>GPT4 Correct Assistant<|end_header_id|>\n\n" |
|
) |
|
] |
|
), |
|
format_prefix=EmptyFormatter(slots=[{"bos_token"}]), |
|
stop_words=["<|eot_id|>"], |
|
replace_eos=True, |
|
) |
|
|
|
|
|
_register_template( |
|
name="orion", |
|
format_user=StringFormatter(slots=["Human: {{content}}\n\nAssistant: ", {"eos_token"}]), |
|
format_prefix=EmptyFormatter(slots=[{"bos_token"}]), |
|
) |
|
|
|
|
|
_register_template( |
|
name="paligemma", |
|
format_user=StringFormatter(slots=["<start_of_turn>user\n{{content}}<end_of_turn>\n<start_of_turn>model\n"]), |
|
format_observation=StringFormatter( |
|
slots=["<start_of_turn>tool\n{{content}}<end_of_turn>\n<start_of_turn>model\n"] |
|
), |
|
format_separator=EmptyFormatter(slots=["<end_of_turn>\n"]), |
|
format_prefix=EmptyFormatter(slots=[{"bos_token"}]), |
|
efficient_eos=True, |
|
mm_plugin=get_mm_plugin(name="paligemma", image_token="<image>"), |
|
) |
|
|
|
|
|
_register_template( |
|
name="phi", |
|
format_user=StringFormatter(slots=["<|user|>\n{{content}}<|end|>\n<|assistant|>\n"]), |
|
format_system=StringFormatter(slots=["<|system|>\n{{content}}<|end|>\n"]), |
|
format_separator=EmptyFormatter(slots=["\n"]), |
|
format_prefix=EmptyFormatter(slots=[{"bos_token"}]), |
|
stop_words=["<|end|>"], |
|
replace_eos=True, |
|
) |
|
|
|
|
|
_register_template( |
|
name="qwen", |
|
format_user=StringFormatter(slots=["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]), |
|
format_system=StringFormatter(slots=["<|im_start|>system\n{{content}}<|im_end|>\n"]), |
|
format_observation=StringFormatter(slots=["<|im_start|>tool\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]), |
|
format_separator=EmptyFormatter(slots=["\n"]), |
|
default_system="You are a helpful assistant.", |
|
stop_words=["<|im_end|>"], |
|
replace_eos=True, |
|
replace_jinja_template=False, |
|
) |
|
|
|
|
|
_register_template( |
|
name="qwen2_vl", |
|
format_user=StringFormatter(slots=["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]), |
|
format_system=StringFormatter(slots=["<|im_start|>system\n{{content}}<|im_end|>\n"]), |
|
format_observation=StringFormatter(slots=["<|im_start|>tool\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]), |
|
format_separator=EmptyFormatter(slots=["\n"]), |
|
default_system="You are a helpful assistant.", |
|
stop_words=["<|im_end|>"], |
|
replace_eos=True, |
|
replace_jinja_template=False, |
|
mm_plugin=get_mm_plugin(name="qwen2_vl", image_token="<|image_pad|>", video_token="<|video_pad|>"), |
|
) |
|
|
|
|
|
_register_template( |
|
name="sailor", |
|
format_user=StringFormatter(slots=["<|im_start|>question\n{{content}}<|im_end|>\n<|im_start|>answer\n"]), |
|
format_system=StringFormatter(slots=["<|im_start|>system\n{{content}}<|im_end|>\n"]), |
|
format_separator=EmptyFormatter(slots=["\n"]), |
|
default_system=( |
|
"You are an AI assistant named Sailor created by Sea AI Lab. " |
|
"Your answer should be friendly, unbiased, faithful, informative and detailed." |
|
), |
|
stop_words=["<|im_end|>"], |
|
replace_eos=True, |
|
) |
|
|
|
|
|
_register_template( |
|
name="solar", |
|
format_user=StringFormatter(slots=["### User:\n{{content}}\n\n### Assistant:\n"]), |
|
format_system=StringFormatter(slots=["### System:\n{{content}}\n\n"]), |
|
efficient_eos=True, |
|
) |
|
|
|
|
|
_register_template( |
|
name="starchat", |
|
format_user=StringFormatter(slots=["<|user|>\n{{content}}<|end|>\n<|assistant|>"]), |
|
format_system=StringFormatter(slots=["<|system|>\n{{content}}<|end|>\n"]), |
|
format_separator=EmptyFormatter(slots=["\n"]), |
|
stop_words=["<|end|>"], |
|
replace_eos=True, |
|
) |
|
|
|
|
|
_register_template( |
|
name="telechat", |
|
format_user=StringFormatter(slots=["<_user>{{content}}<_bot>"]), |
|
format_system=StringFormatter(slots=["<_system>{{content}}<_end>"]), |
|
stop_words=["<_end>"], |
|
replace_eos=True, |
|
) |
|
|
|
|
|
_register_template( |
|
name="vicuna", |
|
format_user=StringFormatter(slots=["USER: {{content}} ASSISTANT:"]), |
|
default_system=( |
|
"A chat between a curious user and an artificial intelligence assistant. " |
|
"The assistant gives helpful, detailed, and polite answers to the user's questions." |
|
), |
|
) |
|
|
|
|
|
_register_template( |
|
name="video_llava", |
|
format_user=StringFormatter(slots=["USER: {{content}} ASSISTANT:"]), |
|
default_system=( |
|
"A chat between a curious user and an artificial intelligence assistant. " |
|
"The assistant gives helpful, detailed, and polite answers to the user's questions." |
|
), |
|
mm_plugin=get_mm_plugin(name="video_llava", image_token="<image>", video_token="<video>"), |
|
) |
|
|
|
|
|
_register_template( |
|
name="xuanyuan", |
|
format_user=StringFormatter(slots=["Human: {{content}} Assistant:"]), |
|
default_system=( |
|
"以下是用户和人工智能助手之间的对话。用户以Human开头,人工智能助手以Assistant开头," |
|
"会对人类提出的问题给出有帮助、高质量、详细和礼貌的回答,并且总是拒绝参与与不道德、" |
|
"不安全、有争议、政治敏感等相关的话题、问题和指示。\n" |
|
), |
|
) |
|
|
|
|
|
_register_template( |
|
name="xverse", |
|
format_user=StringFormatter(slots=["Human: {{content}}\n\nAssistant: "]), |
|
) |
|
|
|
|
|
_register_template( |
|
name="yayi", |
|
format_user=StringFormatter(slots=[{"token": "<|Human|>"}, ":\n{{content}}\n\n", {"token": "<|YaYi|>"}, ":"]), |
|
format_system=StringFormatter(slots=[{"token": "<|System|>"}, ":\n{{content}}\n\n"]), |
|
format_separator=EmptyFormatter(slots=["\n\n"]), |
|
default_system=( |
|
"You are a helpful, respectful and honest assistant named YaYi " |
|
"developed by Beijing Wenge Technology Co.,Ltd. " |
|
"Always answer as helpfully as possible, while being safe. " |
|
"Your answers should not include any harmful, unethical, " |
|
"racist, sexist, toxic, dangerous, or illegal content. " |
|
"Please ensure that your responses are socially unbiased and positive in nature.\n\n" |
|
"If a question does not make any sense, or is not factually coherent, " |
|
"explain why instead of answering something not correct. " |
|
"If you don't know the answer to a question, please don't share false information." |
|
), |
|
stop_words=["<|End|>"], |
|
) |
|
|
|
|
|
_register_template( |
|
name="yi", |
|
format_user=StringFormatter(slots=["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]), |
|
format_system=StringFormatter(slots=["<|im_start|>system\n{{content}}<|im_end|>\n"]), |
|
format_separator=EmptyFormatter(slots=["\n"]), |
|
stop_words=["<|im_end|>"], |
|
replace_eos=True, |
|
) |
|
|
|
|
|
_register_template( |
|
name="yi_vl", |
|
format_user=StringFormatter(slots=["### Human: {{content}}\n### Assistant:"]), |
|
format_separator=EmptyFormatter(slots=["\n"]), |
|
default_system=( |
|
"This is a chat between an inquisitive human and an AI assistant. " |
|
"Assume the role of the AI assistant. Read all the images carefully, " |
|
"and respond to the human's questions with informative, helpful, detailed and polite answers. " |
|
"这是一个好奇的人类和一个人工智能助手之间的对话。假设你扮演这个AI助手的角色。" |
|
"仔细阅读所有的图像,并对人类的问题做出信息丰富、有帮助、详细的和礼貌的回答。\n\n" |
|
), |
|
stop_words=["###"], |
|
efficient_eos=True, |
|
mm_plugin=get_mm_plugin(name="llava", image_token="<image>"), |
|
) |
|
|
|
|
|
_register_template( |
|
name="yuan", |
|
format_user=StringFormatter(slots=["{{content}}", {"token": "<sep>"}]), |
|
format_separator=EmptyFormatter(slots=["\n"]), |
|
stop_words=["<eod>"], |
|
replace_eos=True, |
|
) |
|
|
|
|
|
_register_template( |
|
name="zephyr", |
|
format_user=StringFormatter(slots=["<|user|>\n{{content}}", {"eos_token"}, "<|assistant|>\n"]), |
|
format_system=StringFormatter(slots=["<|system|>\n{{content}}", {"eos_token"}]), |
|
default_system="You are Zephyr, a helpful assistant.", |
|
) |
|
|
|
|
|
_register_template( |
|
name="ziya", |
|
format_user=StringFormatter(slots=["<human>:{{content}}\n<bot>:"]), |
|
format_separator=EmptyFormatter(slots=["\n"]), |
|
) |
|
|