src / llamafactory /data /aligner.py
realaer's picture
Upload folder using huggingface_hub
f6f64ac verified
raw
history blame
9.9 kB
# Copyright 2024 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from functools import partial
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Sequence, Union
from ..extras.logging import get_logger
from .data_utils import Role
if TYPE_CHECKING:
from datasets import Dataset, IterableDataset
from transformers import Seq2SeqTrainingArguments
from ..hparams import DataArguments
from .mm_plugin import ImageInput, VideoInput
from .parser import DatasetAttr
logger = get_logger(__name__)
def _convert_images(
images: Sequence["ImageInput"],
dataset_attr: "DatasetAttr",
data_args: "DataArguments",
) -> Optional[List["ImageInput"]]:
r"""
Optionally concatenates image path to dataset dir when loading from local disk.
"""
if len(images) == 0:
return None
images = images[:]
if dataset_attr.load_from in ["script", "file"]:
for i in range(len(images)):
if isinstance(images[i], str) and os.path.isfile(os.path.join(data_args.dataset_dir, images[i])):
images[i] = os.path.join(data_args.dataset_dir, images[i])
return images
def _convert_videos(
videos: Sequence["VideoInput"],
dataset_attr: "DatasetAttr",
data_args: "DataArguments",
) -> Optional[List["VideoInput"]]:
r"""
Optionally concatenates video path to dataset dir when loading from local disk.
"""
if len(videos) == 0:
return None
videos = videos[:]
if dataset_attr.load_from in ["script", "file"]:
for i in range(len(videos)):
if isinstance(videos[i], str) and os.path.isfile(os.path.join(data_args.dataset_dir, videos[i])):
videos[i] = os.path.join(data_args.dataset_dir, videos[i])
return videos
def convert_alpaca(
example: Dict[str, Any],
dataset_attr: "DatasetAttr",
data_args: "DataArguments",
) -> Dict[str, Any]:
r"""
Converts alpaca format dataset to the standard format.
"""
prompt = []
if dataset_attr.history and isinstance(example[dataset_attr.history], list):
for old_prompt, old_response in example[dataset_attr.history]:
prompt.append({"role": Role.USER.value, "content": old_prompt})
prompt.append({"role": Role.ASSISTANT.value, "content": old_response})
query = []
if dataset_attr.prompt and example[dataset_attr.prompt]:
query.append(example[dataset_attr.prompt])
if dataset_attr.query and example[dataset_attr.query]:
query.append(example[dataset_attr.query])
prompt.append({"role": Role.USER.value, "content": "\n".join(query)}) # "prompt\nquery"
if dataset_attr.kto_tag and isinstance(example[dataset_attr.kto_tag], bool): # kto example
response = [{"role": Role.ASSISTANT.value, "content": example[dataset_attr.response]}]
if example[dataset_attr.kto_tag]:
response = response + [{"role": Role.ASSISTANT.value, "content": ""}]
else:
response = [{"role": Role.ASSISTANT.value, "content": ""}] + response
elif (
dataset_attr.ranking
and isinstance(example[dataset_attr.chosen], str)
and isinstance(example[dataset_attr.rejected], str)
): # pairwise example
response = [
{"role": Role.ASSISTANT.value, "content": example[dataset_attr.chosen]},
{"role": Role.ASSISTANT.value, "content": example[dataset_attr.rejected]},
]
elif dataset_attr.response and isinstance(example[dataset_attr.response], str): # normal example
response = [{"role": Role.ASSISTANT.value, "content": example[dataset_attr.response]}]
else: # unsupervised
response = []
convert_images = partial(_convert_images, dataset_attr=dataset_attr, data_args=data_args)
convert_videos = partial(_convert_videos, dataset_attr=dataset_attr, data_args=data_args)
output = {
"_prompt": prompt,
"_response": response,
"_system": example[dataset_attr.system] if dataset_attr.system else "",
"_tools": example[dataset_attr.tools] if dataset_attr.tools else "",
"_images": convert_images(example[dataset_attr.images]) if dataset_attr.images else None,
"_videos": convert_videos(example[dataset_attr.videos]) if dataset_attr.videos else None,
}
return output
def convert_sharegpt(
example: Dict[str, Any],
dataset_attr: "DatasetAttr",
data_args: "DataArguments",
) -> Dict[str, Any]:
r"""
Converts sharegpt format dataset to the standard format.
"""
tag_mapping = {
dataset_attr.user_tag: Role.USER.value,
dataset_attr.assistant_tag: Role.ASSISTANT.value,
dataset_attr.observation_tag: Role.OBSERVATION.value,
dataset_attr.function_tag: Role.FUNCTION.value,
dataset_attr.system_tag: Role.SYSTEM.value,
}
odd_tags = (dataset_attr.user_tag, dataset_attr.observation_tag)
even_tags = (dataset_attr.assistant_tag, dataset_attr.function_tag)
accept_tags = (odd_tags, even_tags)
messages = example[dataset_attr.messages]
if (
dataset_attr.system_tag
and len(messages) != 0
and messages[0][dataset_attr.role_tag] == dataset_attr.system_tag
):
system = messages[0][dataset_attr.content_tag]
messages = messages[1:]
else:
system = example[dataset_attr.system] if dataset_attr.system else ""
aligned_messages = []
broken_data = False
for turn_idx, message in enumerate(messages):
if message[dataset_attr.role_tag] not in accept_tags[turn_idx % 2]:
logger.warning("Invalid role tag in {}.".format(messages))
broken_data = True
aligned_messages.append(
{"role": tag_mapping[message[dataset_attr.role_tag]], "content": message[dataset_attr.content_tag]}
)
if (not dataset_attr.ranking and len(aligned_messages) % 2 != 0) or (
dataset_attr.ranking and len(aligned_messages) % 2 == 0
):
logger.warning("Invalid message count in {}.".format(messages))
broken_data = True
if dataset_attr.kto_tag and isinstance(example[dataset_attr.kto_tag], bool): # kto example
prompt = aligned_messages[:-1]
response = aligned_messages[-1:]
if example[dataset_attr.kto_tag]:
response = response + [{"role": Role.ASSISTANT.value, "content": ""}]
else:
response = [{"role": Role.ASSISTANT.value, "content": ""}] + response
elif (
dataset_attr.ranking
and isinstance(example[dataset_attr.chosen], dict)
and isinstance(example[dataset_attr.rejected], dict)
): # pairwise example
chosen = example[dataset_attr.chosen]
rejected = example[dataset_attr.rejected]
if (
chosen[dataset_attr.role_tag] not in accept_tags[-1]
or rejected[dataset_attr.role_tag] not in accept_tags[-1]
):
logger.warning("Invalid role tag in {}.".format([chosen, rejected]))
broken_data = True
prompt = aligned_messages
response = [
{"role": tag_mapping[chosen[dataset_attr.role_tag]], "content": chosen[dataset_attr.content_tag]},
{"role": tag_mapping[rejected[dataset_attr.role_tag]], "content": rejected[dataset_attr.content_tag]},
]
else: # normal example
prompt = aligned_messages[:-1]
response = aligned_messages[-1:]
if broken_data:
logger.warning("Skipping this abnormal example.")
prompt, response = [], []
convert_images = partial(_convert_images, dataset_attr=dataset_attr, data_args=data_args)
convert_videos = partial(_convert_videos, dataset_attr=dataset_attr, data_args=data_args)
output = {
"_prompt": prompt,
"_response": response,
"_system": system,
"_tools": example[dataset_attr.tools] if dataset_attr.tools else "",
"_images": convert_images(example[dataset_attr.images]) if dataset_attr.images else None,
"_videos": convert_videos(example[dataset_attr.videos]) if dataset_attr.videos else None,
}
return output
def align_dataset(
dataset: Union["Dataset", "IterableDataset"],
dataset_attr: "DatasetAttr",
data_args: "DataArguments",
training_args: "Seq2SeqTrainingArguments",
) -> Union["Dataset", "IterableDataset"]:
r"""
Aligned dataset:
_prompt: [{"role": "user", "content": "..."}] * (2T - 1)
_response: [{"role": "assistant", "content": "..."}] * N (N > 1 for ranking dataset)
_system: "..."
_tools: "...",
_images: [],
_videos: [],
"""
if dataset_attr.formatting == "alpaca":
convert_func = partial(convert_alpaca, dataset_attr=dataset_attr, data_args=data_args)
else:
convert_func = partial(convert_sharegpt, dataset_attr=dataset_attr, data_args=data_args)
column_names = list(next(iter(dataset)).keys())
kwargs = {}
if not data_args.streaming:
kwargs = dict(
num_proc=data_args.preprocessing_num_workers,
load_from_cache_file=(not data_args.overwrite_cache) or (training_args.local_process_index != 0),
desc="Converting format of dataset",
)
return dataset.map(
convert_func,
batched=False,
remove_columns=column_names,
**kwargs,
)