File size: 14,933 Bytes
f6f64ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
# Copyright 2024 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import json
import logging
import os
import signal
import sys
import time
from concurrent.futures import ThreadPoolExecutor
from datetime import timedelta
from typing import TYPE_CHECKING, Any, Dict, Optional

import torch
import transformers
from peft import PeftModel
from transformers import PreTrainedModel, ProcessorMixin, TrainerCallback
from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR, has_length
from transformers.utils import (
    SAFE_WEIGHTS_NAME,
    WEIGHTS_NAME,
    is_safetensors_available,
)
from typing_extensions import override

from ..extras.constants import TRAINER_LOG, V_HEAD_SAFE_WEIGHTS_NAME, V_HEAD_WEIGHTS_NAME
from ..extras.logging import LoggerHandler, get_logger
from ..extras.misc import get_peak_memory


if is_safetensors_available():
    from safetensors import safe_open
    from safetensors.torch import save_file

if TYPE_CHECKING:
    from transformers import TrainerControl, TrainerState, TrainingArguments
    from trl import AutoModelForCausalLMWithValueHead


logger = get_logger(__name__)


def fix_valuehead_checkpoint(
    model: "AutoModelForCausalLMWithValueHead", output_dir: str, safe_serialization: bool
) -> None:
    r"""
    The model is already unwrapped.

    There are three cases:
    1. full tuning without ds_zero3: state_dict = {"model.layers.*": ..., "v_head.summary.*": ...}
    2. lora tuning without ds_zero3: state_dict = {"v_head.summary.*": ...}
    3. under deepspeed zero3: state_dict = {"pretrained_model.model.layers.*": ..., "v_head.summary.*": ...}

    We assume `stage3_gather_16bit_weights_on_model_save=true`.
    """
    if not isinstance(model.pretrained_model, (PreTrainedModel, PeftModel)):
        return

    if safe_serialization:
        path_to_checkpoint = os.path.join(output_dir, SAFE_WEIGHTS_NAME)
        with safe_open(path_to_checkpoint, framework="pt", device="cpu") as f:
            state_dict: Dict[str, torch.Tensor] = {key: f.get_tensor(key) for key in f.keys()}
    else:
        path_to_checkpoint = os.path.join(output_dir, WEIGHTS_NAME)
        state_dict: Dict[str, torch.Tensor] = torch.load(path_to_checkpoint, map_location="cpu")

    os.remove(path_to_checkpoint)
    decoder_state_dict, v_head_state_dict = {}, {}
    for name, param in state_dict.items():
        if name.startswith("v_head."):
            v_head_state_dict[name] = param
        else:
            decoder_state_dict[name.replace("pretrained_model.", "", 1)] = param

    model.pretrained_model.save_pretrained(
        output_dir, state_dict=decoder_state_dict or None, safe_serialization=safe_serialization
    )

    if safe_serialization:
        save_file(v_head_state_dict, os.path.join(output_dir, V_HEAD_SAFE_WEIGHTS_NAME), metadata={"format": "pt"})
    else:
        torch.save(v_head_state_dict, os.path.join(output_dir, V_HEAD_WEIGHTS_NAME))

    logger.info("Value head model saved at: {}".format(output_dir))


class FixValueHeadModelCallback(TrainerCallback):
    r"""
    A callback for fixing the checkpoint for valuehead models.
    """

    @override
    def on_save(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs):
        r"""
        Event called after a checkpoint save.
        """
        if args.should_save:
            output_dir = os.path.join(args.output_dir, "{}-{}".format(PREFIX_CHECKPOINT_DIR, state.global_step))
            fix_valuehead_checkpoint(
                model=kwargs.pop("model"), output_dir=output_dir, safe_serialization=args.save_safetensors
            )


class SaveProcessorCallback(TrainerCallback):
    r"""
    A callback for saving the processor.
    """

    def __init__(self, processor: "ProcessorMixin") -> None:
        self.processor = processor

    @override
    def on_save(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs):
        if args.should_save:
            output_dir = os.path.join(args.output_dir, "{}-{}".format(PREFIX_CHECKPOINT_DIR, state.global_step))
            getattr(self.processor, "image_processor").save_pretrained(output_dir)

    @override
    def on_train_end(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs):
        if args.should_save:
            getattr(self.processor, "image_processor").save_pretrained(args.output_dir)


class PissaConvertCallback(TrainerCallback):
    r"""
    A callback for converting the PiSSA adapter to a normal one.
    """

    @override
    def on_train_begin(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs):
        r"""
        Event called at the beginning of training.
        """
        if args.should_save:
            model = kwargs.pop("model")
            pissa_init_dir = os.path.join(args.output_dir, "pissa_init")
            logger.info("Initial PiSSA adapter will be saved at: {}.".format(pissa_init_dir))
            if isinstance(model, PeftModel):
                init_lora_weights = getattr(model.peft_config["default"], "init_lora_weights")
                setattr(model.peft_config["default"], "init_lora_weights", True)
                model.save_pretrained(pissa_init_dir, safe_serialization=args.save_safetensors)
                setattr(model.peft_config["default"], "init_lora_weights", init_lora_weights)

    @override
    def on_train_end(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs):
        if args.should_save:
            model = kwargs.pop("model")
            pissa_init_dir = os.path.join(args.output_dir, "pissa_init")
            pissa_backup_dir = os.path.join(args.output_dir, "pissa_backup")
            pissa_convert_dir = os.path.join(args.output_dir, "pissa_converted")
            logger.info("Converted PiSSA adapter will be saved at: {}.".format(pissa_convert_dir))
            # 1. save a pissa backup with init_lora_weights: True
            # 2. save a converted lora with init_lora_weights: pissa
            # 3. load the pissa backup with init_lora_weights: True
            # 4. delete the initial adapter and change init_lora_weights to pissa
            if isinstance(model, PeftModel):
                init_lora_weights = getattr(model.peft_config["default"], "init_lora_weights")
                setattr(model.peft_config["default"], "init_lora_weights", True)
                model.save_pretrained(pissa_backup_dir, safe_serialization=args.save_safetensors)
                setattr(model.peft_config["default"], "init_lora_weights", init_lora_weights)
                model.save_pretrained(
                    pissa_convert_dir, safe_serialization=args.save_safetensors, convert_pissa_to_lora=pissa_init_dir
                )  # TODO: use `path_initial_model_for_weight_conversion` (peft>=0.12.0)
                model.load_adapter(pissa_backup_dir, "default", is_trainable=True)
                model.set_adapter("default")
                if "pissa_init" in model.peft_config.keys():  # backward compatibility (peft<0.12.0)
                    model.delete_adapter("pissa_init")

                setattr(model.peft_config["default"], "init_lora_weights", init_lora_weights)


class LogCallback(TrainerCallback):
    r"""
    A callback for logging training and evaluation status.
    """

    def __init__(self) -> None:
        # Progress
        self.start_time = 0
        self.cur_steps = 0
        self.max_steps = 0
        self.elapsed_time = ""
        self.remaining_time = ""
        self.thread_pool: Optional["ThreadPoolExecutor"] = None
        # Status
        self.aborted = False
        self.do_train = False
        # Web UI
        self.webui_mode = os.environ.get("LLAMABOARD_ENABLED", "0").lower() in ["true", "1"]
        if self.webui_mode:
            signal.signal(signal.SIGABRT, self._set_abort)
            self.logger_handler = LoggerHandler(os.environ.get("LLAMABOARD_WORKDIR"))
            logging.root.addHandler(self.logger_handler)
            transformers.logging.add_handler(self.logger_handler)

    def _set_abort(self, signum, frame) -> None:
        self.aborted = True

    def _reset(self, max_steps: int = 0) -> None:
        self.start_time = time.time()
        self.cur_steps = 0
        self.max_steps = max_steps
        self.elapsed_time = ""
        self.remaining_time = ""

    def _timing(self, cur_steps: int) -> None:
        cur_time = time.time()
        elapsed_time = cur_time - self.start_time
        avg_time_per_step = elapsed_time / cur_steps if cur_steps != 0 else 0
        remaining_time = (self.max_steps - cur_steps) * avg_time_per_step
        self.cur_steps = cur_steps
        self.elapsed_time = str(timedelta(seconds=int(elapsed_time)))
        self.remaining_time = str(timedelta(seconds=int(remaining_time)))

    def _write_log(self, output_dir: str, logs: Dict[str, Any]) -> None:
        with open(os.path.join(output_dir, TRAINER_LOG), "a", encoding="utf-8") as f:
            f.write(json.dumps(logs) + "\n")

    def _create_thread_pool(self, output_dir: str) -> None:
        os.makedirs(output_dir, exist_ok=True)
        self.thread_pool = ThreadPoolExecutor(max_workers=1)

    def _close_thread_pool(self) -> None:
        if self.thread_pool is not None:
            self.thread_pool.shutdown(wait=True)
            self.thread_pool = None

    @override
    def on_init_end(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs):
        if (
            args.should_save
            and os.path.exists(os.path.join(args.output_dir, TRAINER_LOG))
            and args.overwrite_output_dir
        ):
            logger.warning("Previous trainer log in this folder will be deleted.")
            os.remove(os.path.join(args.output_dir, TRAINER_LOG))

    @override
    def on_train_begin(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs):
        if args.should_save:
            self.do_train = True
            self._reset(max_steps=state.max_steps)
            self._create_thread_pool(output_dir=args.output_dir)

    @override
    def on_train_end(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs):
        self._close_thread_pool()

    @override
    def on_substep_end(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs):
        if self.aborted:
            control.should_epoch_stop = True
            control.should_training_stop = True

    @override
    def on_step_end(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs):
        if self.aborted:
            control.should_epoch_stop = True
            control.should_training_stop = True

    @override
    def on_evaluate(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs):
        if not self.do_train:
            self._close_thread_pool()

    @override
    def on_predict(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs):
        if not self.do_train:
            self._close_thread_pool()

    @override
    def on_log(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs):
        if not args.should_save:
            return

        self._timing(cur_steps=state.global_step)
        logs = dict(
            current_steps=self.cur_steps,
            total_steps=self.max_steps,
            loss=state.log_history[-1].get("loss", None),
            eval_loss=state.log_history[-1].get("eval_loss", None),
            predict_loss=state.log_history[-1].get("predict_loss", None),
            reward=state.log_history[-1].get("reward", None),
            accuracy=state.log_history[-1].get("rewards/accuracies", None),
            learning_rate=state.log_history[-1].get("learning_rate", None),
            epoch=state.log_history[-1].get("epoch", None),
            percentage=round(self.cur_steps / self.max_steps * 100, 2) if self.max_steps != 0 else 100,
            elapsed_time=self.elapsed_time,
            remaining_time=self.remaining_time,
        )
        if state.num_input_tokens_seen:
            logs["throughput"] = round(state.num_input_tokens_seen / (time.time() - self.start_time), 2)
            logs["total_tokens"] = state.num_input_tokens_seen

        if os.environ.get("RECORD_VRAM", "0").lower() in ["true", "1"]:
            vram_allocated, vram_reserved = get_peak_memory()
            logs["vram_allocated"] = round(vram_allocated / 1024 / 1024 / 1024, 2)
            logs["vram_reserved"] = round(vram_reserved / 1024 / 1024 / 1024, 2)

        logs = {k: v for k, v in logs.items() if v is not None}
        if self.webui_mode and all(key in logs for key in ["loss", "learning_rate", "epoch"]):
            logger.info(
                "{{'loss': {:.4f}, 'learning_rate': {:2.4e}, 'epoch': {:.2f}, 'throughput': {}}}".format(
                    logs["loss"], logs["learning_rate"], logs["epoch"], logs.get("throughput", "N/A")
                )
            )

        if self.thread_pool is not None:
            self.thread_pool.submit(self._write_log, args.output_dir, logs)

    @override
    def on_prediction_step(
        self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs
    ):
        if self.do_train:
            return

        if self.aborted:
            sys.exit(0)

        if not args.should_save:
            return

        eval_dataloader = kwargs.pop("eval_dataloader", None)
        if has_length(eval_dataloader):
            if self.max_steps == 0:
                self._reset(max_steps=len(eval_dataloader))
                self._create_thread_pool(output_dir=args.output_dir)

            self._timing(cur_steps=self.cur_steps + 1)
            if self.cur_steps % 5 == 0 and self.thread_pool is not None:
                logs = dict(
                    current_steps=self.cur_steps,
                    total_steps=self.max_steps,
                    percentage=round(self.cur_steps / self.max_steps * 100, 2) if self.max_steps != 0 else 100,
                    elapsed_time=self.elapsed_time,
                    remaining_time=self.remaining_time,
                )
                self.thread_pool.submit(self._write_log, args.output_dir, logs)