File size: 12,887 Bytes
f6f64ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
# Copyright 2024 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import re
from typing import TYPE_CHECKING

import torch
from peft import LoraConfig, LoraModel, PeftModel, TaskType, get_peft_model
from transformers.integrations import is_deepspeed_zero3_enabled
from transformers.modeling_utils import is_fsdp_enabled

from ..extras.logging import get_logger
from .model_utils.misc import find_all_linear_modules, find_expanded_modules
from .model_utils.quantization import QuantizationMethod
from .model_utils.unsloth import get_unsloth_peft_model, load_unsloth_peft_model
from .model_utils.visual import get_forbidden_modules, patch_target_modules


if TYPE_CHECKING:
    from transformers import PretrainedConfig, PreTrainedModel

    from ..hparams import FinetuningArguments, ModelArguments


logger = get_logger(__name__)


def _setup_full_tuning(
    model: "PreTrainedModel",
    finetuning_args: "FinetuningArguments",
    is_trainable: bool,
    cast_trainable_params_to_fp32: bool,
) -> None:
    if not is_trainable:
        return

    logger.info("Fine-tuning method: Full")
    forbidden_modules = get_forbidden_modules(model.config, finetuning_args)
    for name, param in model.named_parameters():
        if not any(forbidden_module in name for forbidden_module in forbidden_modules):
            if cast_trainable_params_to_fp32:
                param.data = param.data.to(torch.float32)
        else:
            param.requires_grad_(False)


def _setup_freeze_tuning(
    model: "PreTrainedModel",
    finetuning_args: "FinetuningArguments",
    is_trainable: bool,
    cast_trainable_params_to_fp32: bool,
) -> None:
    if not is_trainable:
        return

    logger.info("Fine-tuning method: Freeze")
    if hasattr(model.config, "text_config"):  # composite models
        config = getattr(model.config, "text_config")
    else:
        config = model.config

    num_layers = (
        getattr(config, "num_hidden_layers", None)
        or getattr(config, "num_layers", None)
        or getattr(config, "n_layer", None)
    )
    if not num_layers:
        raise ValueError("Current model does not support freeze tuning.")

    if finetuning_args.use_llama_pro:
        if num_layers % finetuning_args.freeze_trainable_layers != 0:
            raise ValueError(
                "`num_layers` {} should be divisible by `num_layer_trainable` {}.".format(
                    num_layers, finetuning_args.freeze_trainable_layers
                )
            )

        stride = num_layers // finetuning_args.freeze_trainable_layers
        trainable_layer_ids = range(stride - 1, num_layers + stride - 1, stride)
    elif finetuning_args.freeze_trainable_layers > 0:  # fine-tuning the last n layers if num_layer_trainable > 0
        trainable_layer_ids = range(max(0, num_layers - finetuning_args.freeze_trainable_layers), num_layers)
    else:  # fine-tuning the first n layers if num_layer_trainable < 0
        trainable_layer_ids = range(min(-finetuning_args.freeze_trainable_layers, num_layers))

    hidden_modules = set()
    non_hidden_modules = set()
    for name, _ in model.named_parameters():
        if ".0." in name:
            hidden_modules.add(name.split(".0.")[-1].split(".")[0])
        elif ".1." in name:  # MoD starts from layer 1
            hidden_modules.add(name.split(".1.")[-1].split(".")[0])

        if re.search(r"\.\d+\.", name) is None:
            non_hidden_modules.add(name.split(".")[-2])

    trainable_layers = []
    for module_name in finetuning_args.freeze_trainable_modules:
        if module_name != "all" and module_name not in hidden_modules:
            raise ValueError(
                "Module {} is not found, please choose from {}".format(module_name, ", ".join(hidden_modules))
            )

        for idx in trainable_layer_ids:
            trainable_layers.append(".{:d}.{}".format(idx, module_name if module_name != "all" else ""))

    if finetuning_args.freeze_extra_modules:
        for module_name in finetuning_args.freeze_extra_modules:
            if module_name not in non_hidden_modules:
                raise ValueError(
                    "Module {} is not found, please choose from {}".format(module_name, ", ".join(non_hidden_modules))
                )

            trainable_layers.append(module_name)

    forbidden_modules = get_forbidden_modules(model.config, finetuning_args)
    for name, param in model.named_parameters():
        if any(trainable_layer in name for trainable_layer in trainable_layers) and not any(
            forbidden_module in name for forbidden_module in forbidden_modules
        ):
            if cast_trainable_params_to_fp32:
                param.data = param.data.to(torch.float32)
        else:
            param.requires_grad_(False)

    logger.info("Set trainable layers: {}".format(",".join(trainable_layers)))


def _setup_lora_tuning(
    config: "PretrainedConfig",
    model: "PreTrainedModel",
    model_args: "ModelArguments",
    finetuning_args: "FinetuningArguments",
    is_trainable: bool,
    cast_trainable_params_to_fp32: bool,
) -> "PeftModel":
    if is_trainable:
        logger.info("Fine-tuning method: {}".format("DoRA" if finetuning_args.use_dora else "LoRA"))

    adapter_to_resume = None

    if model_args.adapter_name_or_path is not None:
        is_mergeable = True
        if getattr(model, "quantization_method", None):  # merge lora in quantized model is unstable
            assert len(model_args.adapter_name_or_path) == 1, "Quantized model only accepts a single adapter."
            is_mergeable = False

        if is_deepspeed_zero3_enabled():
            assert len(model_args.adapter_name_or_path) == 1, "Cannot use multiple adapters in DeepSpeed ZeRO-3."
            is_mergeable = False

        if model_args.use_unsloth:
            assert len(model_args.adapter_name_or_path) == 1, "Unsloth model only accepts a single adapter."
            is_mergeable = False

        if (is_trainable and not finetuning_args.create_new_adapter) or (not is_mergeable):
            adapter_to_merge = model_args.adapter_name_or_path[:-1]
            adapter_to_resume = model_args.adapter_name_or_path[-1]
        else:
            adapter_to_merge = model_args.adapter_name_or_path

        init_kwargs = {
            "subfolder": model_args.adapter_folder,
            "offload_folder": model_args.offload_folder,
            "cache_dir": model_args.cache_dir,
            "revision": model_args.model_revision,
            "token": model_args.hf_hub_token,
        }

        for adapter in adapter_to_merge:
            model: "LoraModel" = PeftModel.from_pretrained(model, adapter, **init_kwargs)
            model = model.merge_and_unload()

        if len(adapter_to_merge) > 0:
            logger.info("Merged {} adapter(s).".format(len(adapter_to_merge)))

        if adapter_to_resume is not None:  # resume lora training
            if model_args.use_unsloth:
                model = load_unsloth_peft_model(config, model_args, is_trainable=is_trainable)
            else:
                model = PeftModel.from_pretrained(model, adapter_to_resume, is_trainable=is_trainable, **init_kwargs)

        logger.info("Loaded adapter(s): {}".format(",".join(model_args.adapter_name_or_path)))

    if is_trainable and adapter_to_resume is None:  # create new lora weights while training
        if len(finetuning_args.lora_target) == 1 and finetuning_args.lora_target[0] == "all":
            target_modules = find_all_linear_modules(model, finetuning_args.freeze_vision_tower)
        else:
            target_modules = finetuning_args.lora_target

        if finetuning_args.use_llama_pro:
            target_modules = find_expanded_modules(model, target_modules, finetuning_args.freeze_trainable_layers)

        target_modules = patch_target_modules(model.config, finetuning_args, target_modules)

        if (
            finetuning_args.use_dora
            and getattr(model, "quantization_method", None) is not None
            and getattr(model, "quantization_method", None) != QuantizationMethod.BITS_AND_BYTES
        ):
            raise ValueError("DoRA is not compatible with PTQ-quantized models.")

        if model_args.resize_vocab and finetuning_args.additional_target is None:
            input_embeddings = model.get_input_embeddings()
            output_embeddings = model.get_output_embeddings()
            module_names = set()
            for name, module in model.named_modules():
                if module in [input_embeddings, output_embeddings]:
                    module_names.add(name.split(".")[-1])

            finetuning_args.additional_target = module_names
            logger.warning("Vocab has been resized, add {} to trainable params.".format(",".join(module_names)))

        peft_kwargs = {
            "r": finetuning_args.lora_rank,
            "target_modules": target_modules,
            "lora_alpha": finetuning_args.lora_alpha,
            "lora_dropout": finetuning_args.lora_dropout,
            "use_rslora": finetuning_args.use_rslora,
            "use_dora": finetuning_args.use_dora,
            "modules_to_save": finetuning_args.additional_target,
        }

        if model_args.use_unsloth:
            model = get_unsloth_peft_model(model, model_args, peft_kwargs)
        else:
            if finetuning_args.pissa_init:
                if finetuning_args.pissa_iter == -1:
                    logger.info("Using PiSSA initialization.")
                    peft_kwargs["init_lora_weights"] = "pissa"
                else:
                    logger.info("Using PiSSA initialization with FSVD steps {}.".format(finetuning_args.pissa_iter))
                    peft_kwargs["init_lora_weights"] = "pissa_niter_{}".format(finetuning_args.pissa_iter)

            lora_config = LoraConfig(
                task_type=TaskType.CAUSAL_LM,
                inference_mode=False,
                **peft_kwargs,
            )
            model = get_peft_model(model, lora_config)

    if is_trainable and cast_trainable_params_to_fp32:
        for param in filter(lambda p: p.requires_grad, model.parameters()):
            param.data = param.data.to(torch.float32)

    return model


def init_adapter(
    config: "PretrainedConfig",
    model: "PreTrainedModel",
    model_args: "ModelArguments",
    finetuning_args: "FinetuningArguments",
    is_trainable: bool,
) -> "PreTrainedModel":
    r"""
    Initializes the adapters.

    Support full-parameter, freeze and LoRA training.

    Note that the trainable parameters must be cast to float32.
    """
    if is_trainable and getattr(model, "quantization_method", None) is not None:
        if finetuning_args.finetuning_type != "lora":
            raise ValueError("Quantized models can only be used for the LoRA tuning.")

        if finetuning_args.pissa_init:
            raise ValueError("Cannot initialize PiSSA adapter on quantized models.")

    # cast trainable parameters to float32 if:
    # 1. is_trainable and not pure_bf16 and not badam and quantization_bit is not None (qlora)
    # 2. is_trainable and not pure_bf16 and not badam and not zero3 and not fsdp (zero3 or fsdp already in fp32)
    cast_trainable_params_to_fp32 = False
    if not is_trainable:
        pass
    elif finetuning_args.pure_bf16 or finetuning_args.use_badam:
        logger.info("Pure bf16 / BAdam detected, remaining trainable params in half precision.")
    elif model_args.quantization_bit is None and (is_deepspeed_zero3_enabled() or is_fsdp_enabled()):
        logger.info("ZeRO3 / FSDP detected, remaining trainable params in float32.")
    else:
        logger.info("Upcasting trainable params to float32.")
        cast_trainable_params_to_fp32 = True

    if finetuning_args.finetuning_type == "full":
        _setup_full_tuning(model, finetuning_args, is_trainable, cast_trainable_params_to_fp32)
    elif finetuning_args.finetuning_type == "freeze":
        _setup_freeze_tuning(model, finetuning_args, is_trainable, cast_trainable_params_to_fp32)
    elif finetuning_args.finetuning_type == "lora":
        model = _setup_lora_tuning(
            config, model, model_args, finetuning_args, is_trainable, cast_trainable_params_to_fp32
        )
    else:
        raise NotImplementedError("Unknown finetuning type: {}.".format(finetuning_args.finetuning_type))

    return model