File size: 18,380 Bytes
f6f64ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
# Copyright 2024 HuggingFace Inc. and the LlamaFactory team.
#
# This code is inspired by the HuggingFace's transformers library.
# https://github.com/huggingface/transformers/blob/v4.40.0/examples/pytorch/language-modeling/run_clm.py
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging
import os
import sys
from typing import Any, Dict, Optional, Tuple

import torch
import transformers
from transformers import HfArgumentParser, Seq2SeqTrainingArguments
from transformers.integrations import is_deepspeed_zero3_enabled
from transformers.trainer_utils import get_last_checkpoint
from transformers.training_args import ParallelMode
from transformers.utils import is_torch_bf16_gpu_available, is_torch_npu_available
from transformers.utils.versions import require_version

from ..extras.constants import CHECKPOINT_NAMES
from ..extras.logging import get_logger
from ..extras.misc import check_dependencies, get_current_device
from .data_args import DataArguments
from .evaluation_args import EvaluationArguments
from .finetuning_args import FinetuningArguments
from .generating_args import GeneratingArguments
from .model_args import ModelArguments


logger = get_logger(__name__)


check_dependencies()


_TRAIN_ARGS = [ModelArguments, DataArguments, Seq2SeqTrainingArguments, FinetuningArguments, GeneratingArguments]
_TRAIN_CLS = Tuple[ModelArguments, DataArguments, Seq2SeqTrainingArguments, FinetuningArguments, GeneratingArguments]
_INFER_ARGS = [ModelArguments, DataArguments, FinetuningArguments, GeneratingArguments]
_INFER_CLS = Tuple[ModelArguments, DataArguments, FinetuningArguments, GeneratingArguments]
_EVAL_ARGS = [ModelArguments, DataArguments, EvaluationArguments, FinetuningArguments]
_EVAL_CLS = Tuple[ModelArguments, DataArguments, EvaluationArguments, FinetuningArguments]


def _parse_args(parser: "HfArgumentParser", args: Optional[Dict[str, Any]] = None) -> Tuple[Any]:
    if args is not None:
        return parser.parse_dict(args)

    if len(sys.argv) == 2 and (sys.argv[1].endswith(".yaml") or sys.argv[1].endswith(".yml")):
        return parser.parse_yaml_file(os.path.abspath(sys.argv[1]))

    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        return parser.parse_json_file(os.path.abspath(sys.argv[1]))

    (*parsed_args, unknown_args) = parser.parse_args_into_dataclasses(return_remaining_strings=True)

    if unknown_args:
        print(parser.format_help())
        print("Got unknown args, potentially deprecated arguments: {}".format(unknown_args))
        raise ValueError("Some specified arguments are not used by the HfArgumentParser: {}".format(unknown_args))

    return (*parsed_args,)


def _set_transformers_logging(log_level: Optional[int] = logging.INFO) -> None:
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()


def _verify_model_args(
    model_args: "ModelArguments",
    data_args: "DataArguments",
    finetuning_args: "FinetuningArguments",
) -> None:
    if model_args.adapter_name_or_path is not None and finetuning_args.finetuning_type != "lora":
        raise ValueError("Adapter is only valid for the LoRA method.")

    if model_args.quantization_bit is not None:
        if finetuning_args.finetuning_type != "lora":
            raise ValueError("Quantization is only compatible with the LoRA method.")

        if finetuning_args.pissa_init:
            raise ValueError("Please use scripts/pissa_init.py to initialize PiSSA for a quantized model.")

        if model_args.resize_vocab:
            raise ValueError("Cannot resize embedding layers of a quantized model.")

        if model_args.adapter_name_or_path is not None and finetuning_args.create_new_adapter:
            raise ValueError("Cannot create new adapter upon a quantized model.")

        if model_args.adapter_name_or_path is not None and len(model_args.adapter_name_or_path) != 1:
            raise ValueError("Quantized model only accepts a single adapter. Merge them first.")

    if data_args.template == "yi" and model_args.use_fast_tokenizer:
        logger.warning("We should use slow tokenizer for the Yi models. Change `use_fast_tokenizer` to False.")
        model_args.use_fast_tokenizer = False


def _check_extra_dependencies(
    model_args: "ModelArguments",
    finetuning_args: "FinetuningArguments",
    training_args: Optional["Seq2SeqTrainingArguments"] = None,
) -> None:
    if model_args.use_unsloth:
        require_version("unsloth", "Please install unsloth: https://github.com/unslothai/unsloth")

    if model_args.enable_liger_kernel:
        require_version("liger-kernel", "To fix: pip install liger-kernel")

    if model_args.mixture_of_depths is not None:
        require_version("mixture-of-depth>=1.1.6", "To fix: pip install mixture-of-depth>=1.1.6")

    if model_args.infer_backend == "vllm":
        require_version("vllm>=0.4.3,<=0.6.2", "To fix: pip install vllm>=0.4.3,<=0.6.2")

    if finetuning_args.use_galore:
        require_version("galore_torch", "To fix: pip install galore_torch")

    if finetuning_args.use_badam:
        require_version("badam>=1.2.1", "To fix: pip install badam>=1.2.1")

    if finetuning_args.use_adam_mini:
        require_version("adam-mini", "To fix: pip install adam-mini")

    if finetuning_args.plot_loss:
        require_version("matplotlib", "To fix: pip install matplotlib")

    if training_args is not None and training_args.predict_with_generate:
        require_version("jieba", "To fix: pip install jieba")
        require_version("nltk", "To fix: pip install nltk")
        require_version("rouge_chinese", "To fix: pip install rouge-chinese")


def _parse_train_args(args: Optional[Dict[str, Any]] = None) -> _TRAIN_CLS:
    parser = HfArgumentParser(_TRAIN_ARGS)
    return _parse_args(parser, args)


def _parse_infer_args(args: Optional[Dict[str, Any]] = None) -> _INFER_CLS:
    parser = HfArgumentParser(_INFER_ARGS)
    return _parse_args(parser, args)


def _parse_eval_args(args: Optional[Dict[str, Any]] = None) -> _EVAL_CLS:
    parser = HfArgumentParser(_EVAL_ARGS)
    return _parse_args(parser, args)


def get_train_args(args: Optional[Dict[str, Any]] = None) -> _TRAIN_CLS:
    model_args, data_args, training_args, finetuning_args, generating_args = _parse_train_args(args)

    # Setup logging
    if training_args.should_log:
        _set_transformers_logging()

    # Check arguments
    if finetuning_args.stage != "pt" and data_args.template is None:
        raise ValueError("Please specify which `template` to use.")

    if finetuning_args.stage != "sft":
        if training_args.predict_with_generate:
            raise ValueError("`predict_with_generate` cannot be set as True except SFT.")

        if data_args.neat_packing:
            raise ValueError("`neat_packing` cannot be set as True except SFT.")

        if data_args.train_on_prompt or data_args.mask_history:
            raise ValueError("`train_on_prompt` or `mask_history` cannot be set as True except SFT.")

    if finetuning_args.stage == "sft" and training_args.do_predict and not training_args.predict_with_generate:
        raise ValueError("Please enable `predict_with_generate` to save model predictions.")

    if finetuning_args.stage in ["rm", "ppo"] and training_args.load_best_model_at_end:
        raise ValueError("RM and PPO stages do not support `load_best_model_at_end`.")

    if finetuning_args.stage == "ppo":
        if not training_args.do_train:
            raise ValueError("PPO training does not support evaluation, use the SFT stage to evaluate models.")

        if model_args.shift_attn:
            raise ValueError("PPO training is incompatible with S^2-Attn.")

        if finetuning_args.reward_model_type == "lora" and model_args.use_unsloth:
            raise ValueError("Unsloth does not support lora reward model.")

        if training_args.report_to and training_args.report_to[0] not in ["wandb", "tensorboard"]:
            raise ValueError("PPO only accepts wandb or tensorboard logger.")

    if training_args.parallel_mode == ParallelMode.NOT_DISTRIBUTED:
        raise ValueError("Please launch distributed training with `llamafactory-cli` or `torchrun`.")

    if training_args.deepspeed and training_args.parallel_mode != ParallelMode.DISTRIBUTED:
        raise ValueError("Please use `FORCE_TORCHRUN=1` to launch DeepSpeed training.")

    if training_args.max_steps == -1 and data_args.streaming:
        raise ValueError("Please specify `max_steps` in streaming mode.")

    if training_args.do_train and data_args.dataset is None:
        raise ValueError("Please specify dataset for training.")

    if (training_args.do_eval or training_args.do_predict) and (
        data_args.eval_dataset is None and data_args.val_size < 1e-6
    ):
        raise ValueError("Please specify dataset for evaluation.")

    if training_args.predict_with_generate:
        if is_deepspeed_zero3_enabled():
            raise ValueError("`predict_with_generate` is incompatible with DeepSpeed ZeRO-3.")

        if data_args.eval_dataset is None:
            raise ValueError("Cannot use `predict_with_generate` if `eval_dataset` is None.")

        if finetuning_args.compute_accuracy:
            raise ValueError("Cannot use `predict_with_generate` and `compute_accuracy` together.")

    if training_args.do_train and model_args.quantization_device_map == "auto":
        raise ValueError("Cannot use device map for quantized models in training.")

    if finetuning_args.pissa_init and is_deepspeed_zero3_enabled():
        raise ValueError("Please use scripts/pissa_init.py to initialize PiSSA in DeepSpeed ZeRO-3.")

    if finetuning_args.pure_bf16:
        if not (is_torch_bf16_gpu_available() or (is_torch_npu_available() and torch.npu.is_bf16_supported())):
            raise ValueError("This device does not support `pure_bf16`.")

        if is_deepspeed_zero3_enabled():
            raise ValueError("`pure_bf16` is incompatible with DeepSpeed ZeRO-3.")

    if (
        finetuning_args.use_galore
        and finetuning_args.galore_layerwise
        and training_args.parallel_mode == ParallelMode.DISTRIBUTED
    ):
        raise ValueError("Distributed training does not support layer-wise GaLore.")

    if finetuning_args.use_badam and training_args.parallel_mode == ParallelMode.DISTRIBUTED:
        if finetuning_args.badam_mode == "ratio":
            raise ValueError("Radio-based BAdam does not yet support distributed training, use layer-wise BAdam.")
        elif not is_deepspeed_zero3_enabled():
            raise ValueError("Layer-wise BAdam only supports DeepSpeed ZeRO-3 training.")

    if finetuning_args.use_galore and training_args.deepspeed is not None:
        raise ValueError("GaLore is incompatible with DeepSpeed yet.")

    if model_args.infer_backend == "vllm":
        raise ValueError("vLLM backend is only available for API, CLI and Web.")

    if model_args.use_unsloth and is_deepspeed_zero3_enabled():
        raise ValueError("Unsloth is incompatible with DeepSpeed ZeRO-3.")

    if data_args.neat_packing and not data_args.packing:
        logger.warning("`neat_packing` requires `packing` is True. Change `packing` to True.")
        data_args.packing = True

    _verify_model_args(model_args, data_args, finetuning_args)
    _check_extra_dependencies(model_args, finetuning_args, training_args)

    if (
        training_args.do_train
        and finetuning_args.finetuning_type == "lora"
        and model_args.quantization_bit is None
        and model_args.resize_vocab
        and finetuning_args.additional_target is None
    ):
        logger.warning("Remember to add embedding layers to `additional_target` to make the added tokens trainable.")

    if training_args.do_train and model_args.quantization_bit is not None and (not model_args.upcast_layernorm):
        logger.warning("We recommend enable `upcast_layernorm` in quantized training.")

    if training_args.do_train and (not training_args.fp16) and (not training_args.bf16):
        logger.warning("We recommend enable mixed precision training.")

    if training_args.do_train and finetuning_args.use_galore and not finetuning_args.pure_bf16:
        logger.warning("Using GaLore with mixed precision training may significantly increases GPU memory usage.")

    if (not training_args.do_train) and model_args.quantization_bit is not None:
        logger.warning("Evaluating model in 4/8-bit mode may cause lower scores.")

    if (not training_args.do_train) and finetuning_args.stage == "dpo" and finetuning_args.ref_model is None:
        logger.warning("Specify `ref_model` for computing rewards at evaluation.")

    # Post-process training arguments
    if (
        training_args.parallel_mode == ParallelMode.DISTRIBUTED
        and training_args.ddp_find_unused_parameters is None
        and finetuning_args.finetuning_type == "lora"
    ):
        logger.warning("`ddp_find_unused_parameters` needs to be set as False for LoRA in DDP training.")
        training_args.ddp_find_unused_parameters = False

    if finetuning_args.stage in ["rm", "ppo"] and finetuning_args.finetuning_type in ["full", "freeze"]:
        can_resume_from_checkpoint = False
        if training_args.resume_from_checkpoint is not None:
            logger.warning("Cannot resume from checkpoint in current stage.")
            training_args.resume_from_checkpoint = None
    else:
        can_resume_from_checkpoint = True

    if (
        training_args.resume_from_checkpoint is None
        and training_args.do_train
        and os.path.isdir(training_args.output_dir)
        and not training_args.overwrite_output_dir
        and can_resume_from_checkpoint
    ):
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and any(
            os.path.isfile(os.path.join(training_args.output_dir, name)) for name in CHECKPOINT_NAMES
        ):
            raise ValueError("Output directory already exists and is not empty. Please set `overwrite_output_dir`.")

        if last_checkpoint is not None:
            training_args.resume_from_checkpoint = last_checkpoint
            logger.info("Resuming training from {}.".format(training_args.resume_from_checkpoint))
            logger.info("Change `output_dir` or use `overwrite_output_dir` to avoid.")

    if (
        finetuning_args.stage in ["rm", "ppo"]
        and finetuning_args.finetuning_type == "lora"
        and training_args.resume_from_checkpoint is not None
    ):
        logger.warning(
            "Add {} to `adapter_name_or_path` to resume training from checkpoint.".format(
                training_args.resume_from_checkpoint
            )
        )

    # Post-process model arguments
    if training_args.bf16 or finetuning_args.pure_bf16:
        model_args.compute_dtype = torch.bfloat16
    elif training_args.fp16:
        model_args.compute_dtype = torch.float16

    model_args.device_map = {"": get_current_device()}
    model_args.model_max_length = data_args.cutoff_len
    model_args.block_diag_attn = data_args.neat_packing
    data_args.packing = data_args.packing if data_args.packing is not None else finetuning_args.stage == "pt"

    # Log on each process the small summary
    logger.info(
        "Process rank: {}, device: {}, n_gpu: {}, distributed training: {}, compute dtype: {}".format(
            training_args.local_rank,
            training_args.device,
            training_args.n_gpu,
            training_args.parallel_mode == ParallelMode.DISTRIBUTED,
            str(model_args.compute_dtype),
        )
    )

    transformers.set_seed(training_args.seed)

    return model_args, data_args, training_args, finetuning_args, generating_args


def get_infer_args(args: Optional[Dict[str, Any]] = None) -> _INFER_CLS:
    model_args, data_args, finetuning_args, generating_args = _parse_infer_args(args)

    _set_transformers_logging()

    if data_args.template is None:
        raise ValueError("Please specify which `template` to use.")

    if model_args.infer_backend == "vllm":
        if finetuning_args.stage != "sft":
            raise ValueError("vLLM engine only supports auto-regressive models.")

        if model_args.quantization_bit is not None:
            raise ValueError("vLLM engine does not support bnb quantization (GPTQ and AWQ are supported).")

        if model_args.rope_scaling is not None:
            raise ValueError("vLLM engine does not support RoPE scaling.")

        if model_args.adapter_name_or_path is not None and len(model_args.adapter_name_or_path) != 1:
            raise ValueError("vLLM only accepts a single adapter. Merge them first.")

    _verify_model_args(model_args, data_args, finetuning_args)
    _check_extra_dependencies(model_args, finetuning_args)

    if model_args.export_dir is not None and model_args.export_device == "cpu":
        model_args.device_map = {"": torch.device("cpu")}
        model_args.model_max_length = data_args.cutoff_len
    else:
        model_args.device_map = "auto"

    return model_args, data_args, finetuning_args, generating_args


def get_eval_args(args: Optional[Dict[str, Any]] = None) -> _EVAL_CLS:
    model_args, data_args, eval_args, finetuning_args = _parse_eval_args(args)

    _set_transformers_logging()

    if data_args.template is None:
        raise ValueError("Please specify which `template` to use.")

    if model_args.infer_backend == "vllm":
        raise ValueError("vLLM backend is only available for API, CLI and Web.")

    _verify_model_args(model_args, data_args, finetuning_args)
    _check_extra_dependencies(model_args, finetuning_args)

    model_args.device_map = "auto"

    transformers.set_seed(eval_args.seed)

    return model_args, data_args, eval_args, finetuning_args