File size: 15,101 Bytes
f6f64ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
# Copyright 2024 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from dataclasses import dataclass, field
from typing import List, Literal, Optional


@dataclass
class FreezeArguments:
    r"""
    Arguments pertaining to the freeze (partial-parameter) training.
    """

    freeze_trainable_layers: int = field(
        default=2,
        metadata={
            "help": (
                "The number of trainable layers for freeze (partial-parameter) fine-tuning. "
                "Positive numbers mean the last n layers are set as trainable, "
                "negative numbers mean the first n layers are set as trainable."
            )
        },
    )
    freeze_trainable_modules: str = field(
        default="all",
        metadata={
            "help": (
                "Name(s) of trainable modules for freeze (partial-parameter) fine-tuning. "
                "Use commas to separate multiple modules. "
                "Use `all` to specify all the available modules."
            )
        },
    )
    freeze_extra_modules: Optional[str] = field(
        default=None,
        metadata={
            "help": (
                "Name(s) of modules apart from hidden layers to be set as trainable "
                "for freeze (partial-parameter) fine-tuning. "
                "Use commas to separate multiple modules."
            )
        },
    )


@dataclass
class LoraArguments:
    r"""
    Arguments pertaining to the LoRA training.
    """

    additional_target: Optional[str] = field(
        default=None,
        metadata={
            "help": (
                "Name(s) of modules apart from LoRA layers to be set as trainable "
                "and saved in the final checkpoint. "
                "Use commas to separate multiple modules."
            )
        },
    )
    lora_alpha: Optional[int] = field(
        default=None,
        metadata={"help": "The scale factor for LoRA fine-tuning (default: lora_rank * 2)."},
    )
    lora_dropout: float = field(
        default=0.0,
        metadata={"help": "Dropout rate for the LoRA fine-tuning."},
    )
    lora_rank: int = field(
        default=8,
        metadata={"help": "The intrinsic dimension for LoRA fine-tuning."},
    )
    lora_target: str = field(
        default="all",
        metadata={
            "help": (
                "Name(s) of target modules to apply LoRA. "
                "Use commas to separate multiple modules. "
                "Use `all` to specify all the linear modules."
            )
        },
    )
    loraplus_lr_ratio: Optional[float] = field(
        default=None,
        metadata={"help": "LoRA plus learning rate ratio (lr_B / lr_A)."},
    )
    loraplus_lr_embedding: float = field(
        default=1e-6,
        metadata={"help": "LoRA plus learning rate for lora embedding layers."},
    )
    use_rslora: bool = field(
        default=False,
        metadata={"help": "Whether or not to use the rank stabilization scaling factor for LoRA layer."},
    )
    use_dora: bool = field(
        default=False,
        metadata={"help": "Whether or not to use the weight-decomposed lora method (DoRA)."},
    )
    pissa_init: bool = field(
        default=False,
        metadata={"help": "Whether or not to initialize a PiSSA adapter."},
    )
    pissa_iter: int = field(
        default=16,
        metadata={"help": "The number of iteration steps performed by FSVD in PiSSA. Use -1 to disable it."},
    )
    pissa_convert: bool = field(
        default=False,
        metadata={"help": "Whether or not to convert the PiSSA adapter to a normal LoRA adapter."},
    )
    create_new_adapter: bool = field(
        default=False,
        metadata={"help": "Whether or not to create a new adapter with randomly initialized weight."},
    )


@dataclass
class RLHFArguments:
    r"""
    Arguments pertaining to the PPO, DPO and KTO training.
    """

    pref_beta: float = field(
        default=0.1,
        metadata={"help": "The beta parameter in the preference loss."},
    )
    pref_ftx: float = field(
        default=0.0,
        metadata={"help": "The supervised fine-tuning loss coefficient in DPO training."},
    )
    pref_loss: Literal["sigmoid", "hinge", "ipo", "kto_pair", "orpo", "simpo"] = field(
        default="sigmoid",
        metadata={"help": "The type of DPO loss to use."},
    )
    dpo_label_smoothing: float = field(
        default=0.0,
        metadata={"help": "The robust DPO label smoothing parameter in cDPO that should be between 0 and 0.5."},
    )
    kto_chosen_weight: float = field(
        default=1.0,
        metadata={"help": "The weight factor of the desirable losses in KTO training."},
    )
    kto_rejected_weight: float = field(
        default=1.0,
        metadata={"help": "The weight factor of the undesirable losses in KTO training."},
    )
    simpo_gamma: float = field(
        default=0.5,
        metadata={"help": "The target reward margin term in SimPO loss."},
    )
    ppo_buffer_size: int = field(
        default=1,
        metadata={"help": "The number of mini-batches to make experience buffer in a PPO optimization step."},
    )
    ppo_epochs: int = field(
        default=4,
        metadata={"help": "The number of epochs to perform in a PPO optimization step."},
    )
    ppo_score_norm: bool = field(
        default=False,
        metadata={"help": "Use score normalization in PPO training."},
    )
    ppo_target: float = field(
        default=6.0,
        metadata={"help": "Target KL value for adaptive KL control in PPO training."},
    )
    ppo_whiten_rewards: bool = field(
        default=False,
        metadata={"help": "Whiten the rewards before compute advantages in PPO training."},
    )
    ref_model: Optional[str] = field(
        default=None,
        metadata={"help": "Path to the reference model used for the PPO or DPO training."},
    )
    ref_model_adapters: Optional[str] = field(
        default=None,
        metadata={"help": "Path to the adapters of the reference model."},
    )
    ref_model_quantization_bit: Optional[int] = field(
        default=None,
        metadata={"help": "The number of bits to quantize the reference model."},
    )
    reward_model: Optional[str] = field(
        default=None,
        metadata={"help": "Path to the reward model used for the PPO training."},
    )
    reward_model_adapters: Optional[str] = field(
        default=None,
        metadata={"help": "Path to the adapters of the reward model."},
    )
    reward_model_quantization_bit: Optional[int] = field(
        default=None,
        metadata={"help": "The number of bits to quantize the reward model."},
    )
    reward_model_type: Literal["lora", "full", "api"] = field(
        default="lora",
        metadata={"help": "The type of the reward model in PPO training. Lora model only supports lora training."},
    )


@dataclass
class GaloreArguments:
    r"""
    Arguments pertaining to the GaLore algorithm.
    """

    use_galore: bool = field(
        default=False,
        metadata={"help": "Whether or not to use the gradient low-Rank projection (GaLore)."},
    )
    galore_target: str = field(
        default="all",
        metadata={
            "help": (
                "Name(s) of modules to apply GaLore. Use commas to separate multiple modules. "
                "Use `all` to specify all the linear modules."
            )
        },
    )
    galore_rank: int = field(
        default=16,
        metadata={"help": "The rank of GaLore gradients."},
    )
    galore_update_interval: int = field(
        default=200,
        metadata={"help": "Number of steps to update the GaLore projection."},
    )
    galore_scale: float = field(
        default=0.25,
        metadata={"help": "GaLore scaling coefficient."},
    )
    galore_proj_type: Literal["std", "reverse_std", "right", "left", "full"] = field(
        default="std",
        metadata={"help": "Type of GaLore projection."},
    )
    galore_layerwise: bool = field(
        default=False,
        metadata={"help": "Whether or not to enable layer-wise update to further save memory."},
    )


@dataclass
class BAdamArgument:
    r"""
    Arguments pertaining to the BAdam optimizer.
    """

    use_badam: bool = field(
        default=False,
        metadata={"help": "Whether or not to use the BAdam optimizer."},
    )
    badam_mode: Literal["layer", "ratio"] = field(
        default="layer",
        metadata={"help": "Whether to use layer-wise or ratio-wise BAdam optimizer."},
    )
    badam_start_block: Optional[int] = field(
        default=None,
        metadata={"help": "The starting block index for layer-wise BAdam."},
    )
    badam_switch_mode: Optional[Literal["ascending", "descending", "random", "fixed"]] = field(
        default="ascending",
        metadata={"help": "the strategy of picking block to update for layer-wise BAdam."},
    )
    badam_switch_interval: Optional[int] = field(
        default=50,
        metadata={
            "help": "Number of steps to update the block for layer-wise BAdam. Use -1 to disable the block update."
        },
    )
    badam_update_ratio: float = field(
        default=0.05,
        metadata={"help": "The ratio of the update for ratio-wise BAdam."},
    )
    badam_mask_mode: Literal["adjacent", "scatter"] = field(
        default="adjacent",
        metadata={
            "help": (
                "The mode of the mask for BAdam optimizer. "
                "`adjacent` means that the trainable parameters are adjacent to each other, "
                "`scatter` means that trainable parameters are randomly choosed from the weight."
            )
        },
    )
    badam_verbose: int = field(
        default=0,
        metadata={
            "help": (
                "The verbosity level of BAdam optimizer. "
                "0 for no print, 1 for print the block prefix, 2 for print trainable parameters."
            )
        },
    )


@dataclass
class FinetuningArguments(FreezeArguments, LoraArguments, RLHFArguments, GaloreArguments, BAdamArgument):
    r"""
    Arguments pertaining to which techniques we are going to fine-tuning with.
    """

    pure_bf16: bool = field(
        default=False,
        metadata={"help": "Whether or not to train model in purely bf16 precision (without AMP)."},
    )
    stage: Literal["pt", "sft", "rm", "ppo", "dpo", "kto"] = field(
        default="sft",
        metadata={"help": "Which stage will be performed in training."},
    )
    finetuning_type: Literal["lora", "freeze", "full"] = field(
        default="lora",
        metadata={"help": "Which fine-tuning method to use."},
    )
    use_llama_pro: bool = field(
        default=False,
        metadata={"help": "Whether or not to make only the parameters in the expanded blocks trainable."},
    )
    use_adam_mini: bool = field(
        default=False,
        metadata={"help": "Whether or not to use the Adam-mini optimizer."},
    )
    freeze_vision_tower: bool = field(
        default=True,
        metadata={"help": "Whether ot not to freeze vision tower in MLLM training."},
    )
    train_mm_proj_only: bool = field(
        default=False,
        metadata={"help": "Whether or not to train the multimodal projector for MLLM only."},
    )
    compute_accuracy: bool = field(
        default=False,
        metadata={"help": "Whether or not to compute the token-level accuracy at evaluation."},
    )
    plot_loss: bool = field(
        default=False,
        metadata={"help": "Whether or not to save the training loss curves."},
    )

    def __post_init__(self):
        def split_arg(arg):
            if isinstance(arg, str):
                return [item.strip() for item in arg.split(",")]
            return arg

        self.freeze_trainable_modules: List[str] = split_arg(self.freeze_trainable_modules)
        self.freeze_extra_modules: Optional[List[str]] = split_arg(self.freeze_extra_modules)
        self.lora_alpha: int = self.lora_alpha or self.lora_rank * 2
        self.lora_target: List[str] = split_arg(self.lora_target)
        self.additional_target: Optional[List[str]] = split_arg(self.additional_target)
        self.galore_target: List[str] = split_arg(self.galore_target)
        self.freeze_vision_tower = self.freeze_vision_tower or self.train_mm_proj_only
        self.use_ref_model = self.stage == "dpo" and self.pref_loss not in ["orpo", "simpo"]

        assert self.finetuning_type in ["lora", "freeze", "full"], "Invalid fine-tuning method."
        assert self.ref_model_quantization_bit in [None, 8, 4], "We only accept 4-bit or 8-bit quantization."
        assert self.reward_model_quantization_bit in [None, 8, 4], "We only accept 4-bit or 8-bit quantization."

        if self.stage == "ppo" and self.reward_model is None:
            raise ValueError("`reward_model` is necessary for PPO training.")

        if self.stage == "ppo" and self.reward_model_type == "lora" and self.finetuning_type != "lora":
            raise ValueError("`reward_model_type` cannot be lora for Freeze/Full PPO training.")

        if self.stage == "dpo" and self.pref_loss != "sigmoid" and self.dpo_label_smoothing > 1e-6:
            raise ValueError("`dpo_label_smoothing` is only valid for sigmoid loss function.")

        if self.use_llama_pro and self.finetuning_type == "full":
            raise ValueError("`use_llama_pro` is only valid for Freeze or LoRA training.")

        if self.finetuning_type == "lora" and (self.use_galore or self.use_badam):
            raise ValueError("Cannot use LoRA with GaLore or BAdam together.")

        if self.use_galore and self.use_badam:
            raise ValueError("Cannot use GaLore with BAdam together.")

        if self.pissa_init and (self.stage in ["ppo", "kto"] or self.use_ref_model):
            raise ValueError("Cannot use PiSSA for current training stage.")

        if self.train_mm_proj_only and self.finetuning_type != "full":
            raise ValueError("`train_mm_proj_only` is only valid for full training.")

        if self.finetuning_type != "lora":
            if self.loraplus_lr_ratio is not None:
                raise ValueError("`loraplus_lr_ratio` is only valid for LoRA training.")

            if self.use_rslora:
                raise ValueError("`use_rslora` is only valid for LoRA training.")

            if self.use_dora:
                raise ValueError("`use_dora` is only valid for LoRA training.")

            if self.pissa_init:
                raise ValueError("`pissa_init` is only valid for LoRA training.")