Spaces:
Sleeping
Sleeping
import torch | |
import torchvision | |
from torch import nn | |
def create_effnetv2_m_model(num_classes, seed: int = 42): | |
"""Creates an EfficientNetV2_M feature extractor model and transforms. | |
Args: | |
num_classes (int): Number of classes in the classifier head. | |
seed (int, optional): Random seed value. Defaults to 42. | |
Returns: | |
model (torch.nn.Module): EffNetV2_M feature extractor model. | |
transforms (torchvision.transforms): EffNetV2_M image transforms. | |
""" | |
# 1. Use EfficientNet_V2_M pretrained weights and transforms | |
weights = torchvision.models.EfficientNet_V2_M_Weights.DEFAULT | |
transforms = weights.transforms() | |
model = torchvision.models.efficientnet_v2_m(weights=weights) | |
# 2. Freeze all layers in the base model | |
for param in model.parameters(): | |
param.requires_grad = False | |
# 3. Replace the classifier head, set the random seed for reproducibility | |
torch.manual_seed(seed) | |
num_features = model.classifier[ | |
1 | |
].in_features # Assuming the structure is similar; verify this | |
model.classifier = nn.Sequential( | |
nn.Dropout(p=0.3, inplace=True), | |
nn.Linear(in_features=num_features, out_features=num_classes), | |
) | |
return model, transforms | |