Spaces:
Sleeping
Sleeping
File size: 1,262 Bytes
f1c7739 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 |
import torch
import torchvision
from torch import nn
def create_effnetv2_m_model(num_classes, seed: int = 42):
"""Creates an EfficientNetV2_M feature extractor model and transforms.
Args:
num_classes (int): Number of classes in the classifier head.
seed (int, optional): Random seed value. Defaults to 42.
Returns:
model (torch.nn.Module): EffNetV2_M feature extractor model.
transforms (torchvision.transforms): EffNetV2_M image transforms.
"""
# 1. Use EfficientNet_V2_M pretrained weights and transforms
weights = torchvision.models.EfficientNet_V2_M_Weights.DEFAULT
transforms = weights.transforms()
model = torchvision.models.efficientnet_v2_m(weights=weights)
# 2. Freeze all layers in the base model
for param in model.parameters():
param.requires_grad = False
# 3. Replace the classifier head, set the random seed for reproducibility
torch.manual_seed(seed)
num_features = model.classifier[
1
].in_features # Assuming the structure is similar; verify this
model.classifier = nn.Sequential(
nn.Dropout(p=0.3, inplace=True),
nn.Linear(in_features=num_features, out_features=num_classes),
)
return model, transforms
|