File size: 4,122 Bytes
ea22b9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import uuid

import weaviate
from weaviate import Client
from weaviate.embedded import EmbeddedOptions
from weaviate.util import generate_uuid5

from autogpt.config import Config
from autogpt.memory.base import MemoryProviderSingleton, get_ada_embedding


def default_schema(weaviate_index):
    return {
        "class": weaviate_index,
        "properties": [
            {
                "name": "raw_text",
                "dataType": ["text"],
                "description": "original text for the embedding",
            }
        ],
    }


class WeaviateMemory(MemoryProviderSingleton):
    def __init__(self, cfg):
        auth_credentials = self._build_auth_credentials(cfg)

        url = f"{cfg.weaviate_protocol}://{cfg.weaviate_host}:{cfg.weaviate_port}"

        if cfg.use_weaviate_embedded:
            self.client = Client(
                embedded_options=EmbeddedOptions(
                    hostname=cfg.weaviate_host,
                    port=int(cfg.weaviate_port),
                    persistence_data_path=cfg.weaviate_embedded_path,
                )
            )

            print(
                f"Weaviate Embedded running on: {url} with persistence path: {cfg.weaviate_embedded_path}"
            )
        else:
            self.client = Client(url, auth_client_secret=auth_credentials)

        self.index = WeaviateMemory.format_classname(cfg.memory_index)
        self._create_schema()

    @staticmethod
    def format_classname(index):
        # weaviate uses capitalised index names
        # The python client uses the following code to format
        # index names before the corresponding class is created
        if len(index) == 1:
            return index.capitalize()
        return index[0].capitalize() + index[1:]

    def _create_schema(self):
        schema = default_schema(self.index)
        if not self.client.schema.contains(schema):
            self.client.schema.create_class(schema)

    def _build_auth_credentials(self, cfg):
        if cfg.weaviate_username and cfg.weaviate_password:
            return weaviate.AuthClientPassword(
                cfg.weaviate_username, cfg.weaviate_password
            )
        if cfg.weaviate_api_key:
            return weaviate.AuthApiKey(api_key=cfg.weaviate_api_key)
        else:
            return None

    def add(self, data):
        vector = get_ada_embedding(data)

        doc_uuid = generate_uuid5(data, self.index)
        data_object = {"raw_text": data}

        with self.client.batch as batch:
            batch.add_data_object(
                uuid=doc_uuid,
                data_object=data_object,
                class_name=self.index,
                vector=vector,
            )

        return f"Inserting data into memory at uuid: {doc_uuid}:\n data: {data}"

    def get(self, data):
        return self.get_relevant(data, 1)

    def clear(self):
        self.client.schema.delete_all()

        # weaviate does not yet have a neat way to just remove the items in an index
        # without removing the entire schema, therefore we need to re-create it
        # after a call to delete_all
        self._create_schema()

        return "Obliterated"

    def get_relevant(self, data, num_relevant=5):
        query_embedding = get_ada_embedding(data)
        try:
            results = (
                self.client.query.get(self.index, ["raw_text"])
                .with_near_vector({"vector": query_embedding, "certainty": 0.7})
                .with_limit(num_relevant)
                .do()
            )

            if len(results["data"]["Get"][self.index]) > 0:
                return [
                    str(item["raw_text"]) for item in results["data"]["Get"][self.index]
                ]
            else:
                return []

        except Exception as err:
            print(f"Unexpected error {err=}, {type(err)=}")
            return []

    def get_stats(self):
        result = self.client.query.aggregate(self.index).with_meta_count().do()
        class_data = result["data"]["Aggregate"][self.index]

        return class_data[0]["meta"] if class_data else {}