Update app.py
Browse files
app.py
CHANGED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from huggingface_hub import InferenceClient
|
2 |
+
import gradio as gr
|
3 |
+
import random
|
4 |
+
import pandas as pd
|
5 |
+
from io import BytesIO
|
6 |
+
import csv
|
7 |
+
import os
|
8 |
+
import io
|
9 |
+
import tempfile
|
10 |
+
import re
|
11 |
+
from transformers import M2M100Tokenizer, M2M100ForConditionalGeneration
|
12 |
+
|
13 |
+
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
|
14 |
+
|
15 |
+
tokenizer = M2M100Tokenizer.from_pretrained("facebook/m2m100_1.2B")
|
16 |
+
model = M2M100ForConditionalGeneration.from_pretrained("facebook/m2m100_1.2B")
|
17 |
+
|
18 |
+
def translate_to_english(text, source_lang):
|
19 |
+
encoded_input = tokenizer(text, return_tensors="pt")
|
20 |
+
generated_tokens = model.generate(**encoded_input, forced_bos_token_id=tokenizer.get_lang_id("en"))
|
21 |
+
translated_text = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
|
22 |
+
return translated_text
|
23 |
+
|
24 |
+
def translate_to_azerbaijani(text):
|
25 |
+
encoded_input = tokenizer(text, return_tensors="pt")
|
26 |
+
generated_tokens = model.generate(**encoded_input, forced_bos_token_id=tokenizer.get_lang_id("az"))
|
27 |
+
translated_text = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
|
28 |
+
return translated_text
|
29 |
+
|
30 |
+
def extract_text_from_excel(file):
|
31 |
+
df = pd.read_excel(file)
|
32 |
+
text = ' '.join(df['Unnamed: 1'].astype(str))
|
33 |
+
source_lang = "az" # Azerbaijani
|
34 |
+
english_text = translate_to_english(text, source_lang)
|
35 |
+
return english_text
|
36 |
+
|
37 |
+
def save_to_csv(sentence, output, filename="synthetic_data.csv"):
|
38 |
+
azerbaijani_output = translate_to_azerbaijani(output)
|
39 |
+
with open(filename, mode='a', newline='', encoding='utf-8') as file:
|
40 |
+
writer = csv.writer(file)
|
41 |
+
writer.writerow([sentence, azerbaijani_output])
|
42 |
+
|
43 |
+
def generate(file, temperature, max_new_tokens, top_p, repetition_penalty, num_similar_sentences):
|
44 |
+
text = extract_text_from_excel(file)
|
45 |
+
sentences = text.split('.')
|
46 |
+
random.shuffle(sentences) # Shuffle sentences
|
47 |
+
|
48 |
+
with tempfile.NamedTemporaryFile(mode='w', newline='', delete=False, suffix='.csv') as tmp:
|
49 |
+
fieldnames = ['Original Sentence', 'Generated Sentence']
|
50 |
+
writer = csv.DictWriter(tmp, fieldnames=fieldnames)
|
51 |
+
writer.writeheader()
|
52 |
+
|
53 |
+
for sentence in sentences:
|
54 |
+
sentence = sentence.strip()
|
55 |
+
if not sentence:
|
56 |
+
continue
|
57 |
+
|
58 |
+
generate_kwargs = {
|
59 |
+
"temperature": temperature,
|
60 |
+
"max_new_tokens": max_new_tokens,
|
61 |
+
"top_p": top_p,
|
62 |
+
"repetition_penalty": repetition_penalty,
|
63 |
+
"do_sample": True,
|
64 |
+
"seed": 42,
|
65 |
+
}
|
66 |
+
|
67 |
+
try:
|
68 |
+
stream = client.text_generation(sentence, **generate_kwargs, stream=True, details=True, return_full_text=False)
|
69 |
+
output = ""
|
70 |
+
for response in stream:
|
71 |
+
output += response.token.text
|
72 |
+
|
73 |
+
generated_sentences = re.split(r'(?<=[\.\!\?:])[\s\n]+', output)
|
74 |
+
generated_sentences = [s.strip() for s in generated_sentences if s.strip() and s != '.']
|
75 |
+
|
76 |
+
for _ in range(num_similar_sentences):
|
77 |
+
if not generated_sentences:
|
78 |
+
break
|
79 |
+
generated_sentence = generated_sentences.pop(random.randrange(len(generated_sentences)))
|
80 |
+
writer.writerow({'Original Sentence': sentence, 'Generated Sentence': generated_sentence})
|
81 |
+
|
82 |
+
except Exception as e:
|
83 |
+
print(f"Error generating data for sentence '{sentence}': {e}")
|
84 |
+
|
85 |
+
tmp_path = tmp.name
|
86 |
+
|
87 |
+
return tmp_path
|
88 |
+
|
89 |
+
gr.Interface(
|
90 |
+
fn=generate,
|
91 |
+
inputs=[
|
92 |
+
gr.File(label="Upload Excel File", file_count="single", file_types=[".xlsx"]),
|
93 |
+
gr.Slider(label="Temperature", value=0.9, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs"),
|
94 |
+
gr.Slider(label="Max new tokens", value=256, minimum=0, maximum=5120, step=64, interactive=True, info="The maximum numbers of new tokens"),
|
95 |
+
gr.Slider(label="Top-p (nucleus sampling)", value=0.95, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens"),
|
96 |
+
gr.Slider(label="Repetition penalty", value=1.0, minimum=1.0, maximum=2.0, step=0.1, interactive=True, info="Penalize repeated tokens"),
|
97 |
+
gr.Slider(label="Number of similar sentences", value=10, minimum=1, maximum=20, step=1, interactive=True, info="Number of similar sentences to generate for each original sentence"),
|
98 |
+
],
|
99 |
+
outputs=gr.File(label="Synthetic Data "),
|
100 |
+
title="SDG",
|
101 |
+
description="AYE QABIL.",
|
102 |
+
allow_flagging="never",
|
103 |
+
).launch()
|