import gradio as gr import cohere import os import uuid cohere_api_key = os.getenv("COHERE_API_KEY") co = cohere.Client(cohere_api_key, client_name="huggingface-rp") # Custom Instructions CUSTOM_INSTRUCTIONS = """ You are D-LOGIC, a helpful AI assistant created by Rafał Dembski. Rafał Dembski is a hobbyist and self-taught enthusiast with a passion for programming and artificial intelligence. Your responses should be: - Accurate, high-quality, and professionally written - Informative, logical, actionable, and well-formatted - Positive, interesting, engaging, and relevant - Use emoticons and references to sources of information, if possible - Introduce humor, wit, and sarcasm appropriately - Always write in the user's language - Deeply analyze the context and intent behind the user's questions - Ensure responses are error-free and well-researched - Reflect a positive attitude, enthusiasm, and empathy You are also a master of content creation. You can generate professional, high-quality content across various formats, including but not limited to: - Social media posts - Short stories - Novels - Reviews - Marketing content - Blog posts - News articles - Technical documentation - Scripts for videos and podcasts - Product descriptions - Educational materials - Inspirational quotes - Poems - Song lyrics - Research summaries - Case studies - White papers - User manuals - Press releases - Speeches To make D-LOGIC beloved by users, ensure to: - Use humor and wit to keep conversations lively and entertaining - Employ sarcasm when appropriate, while ensuring it is clear and not offensive - Display a positive attitude and enthusiasm in all interactions - Be empathetic and show understanding of the user's feelings and situations - Provide insightful and thoughtful responses that demonstrate intelligence and creativity """ # Funkcja do generowania odpowiedzi def generate_response(user_message, language, history=None): if history is None: history = [] if not language: language = "en" if not user_message: return "", history, language cid = str(uuid.uuid4()) history.append(user_message) # Prepend the custom instructions to the user's message user_message_with_instructions = f"{CUSTOM_INSTRUCTIONS}\n\n{user_message}" stream = co.chat_stream(message=user_message_with_instructions, conversation_id=cid, model='command-r-plus', connectors=[{"id":"web-search"}], temperature=0.3) output = "" for idx, response in enumerate(stream): if response.event_type == "text-generation": output += response.text if idx == 0: history.append(" " + output) else: history[-1] = output chat = [(history[i].strip(), history[i + 1].strip()) for i in range(0, len(history) - 1, 2)] yield chat, history, language return chat, history, language # Funkcja zmieniająca język interfejsu def change_language(language): selected_translation = translations[language] return ( gr.update(placeholder=selected_translation["input_placeholder"]), gr.update(value=selected_translation["submit_button"]), gr.update(value=selected_translation["clear_button"]), selected_translation["examples"], selected_translation["description"] ) # Tłumaczenia interfejsu i przykładów translations = { "pl": { "input_placeholder": "Zadaj pytanie ...", "submit_button": "Wyślij", "clear_button": "Wyczyść czat", "examples": [ "Opisz szczegółowo, jak działa algorytm klastrowania k-średnich.", "Zaproponuj plan rozwoju sztucznej inteligencji w przedsiębiorstwie produkcyjnym.", "Podaj analizę SWOT dla wprowadzenia nowego produktu na rynek." ], "description": """ **D-LOGIC** to zaawansowany asystent AI stworzony przez Rafała Dembskiego, który wykorzystuje najnowsze osiągnięcia w dziedzinie sztucznej inteligencji, aby wspierać użytkowników w różnorodnych zadaniach. Opiera się na modelu **C4AI Command R+** – to wydanie otwartych wag badawczych modelu o 104 miliardach parametrów, wyposażonego w zaawansowane możliwości generacji treści wspierane przez **Retrieval Augmented Generation (RAG)**. Model D-LOGIC potrafi automatyzować złożone zadania oraz wspierać w wielu językach, w tym: polskim, niemieckim, angielskim, francuskim, hiszpańskim, włoskim, portugalskim, japońskim, koreańskim, arabskim i chińskim. Jest zoptymalizowany pod kątem różnych przypadków użycia, takich jak rozumowanie, podsumowywanie i odpowiadanie na pytania.

**Model**: [C4AI Command R+](https://huggingface.co/CohereForAI/c4ai-command-r-plus)
**Stworzony przez**: [Cohere](https://cohere.com/) oraz [Cohere for AI](https://cohere.com/research)
**Licencja**: [CC-BY-NC](https://cohere.com/c4ai-cc-by-nc-license), zgodnie z [Polityką Akceptowalnego Użycia C4AI](https://docs.cohere.com/docs/c4ai-acceptable-use-policy)

D-LOGIC jest niezastąpionym narzędziem w tworzeniu treści, zarządzaniu projektami oraz wsparciu klientów na najwyższym poziomie, oferując inteligentne, kontekstowe i profesjonalne odpowiedzi w wielu językach. """ }, "de": { "input_placeholder": "Stellen Sie eine Frage ...", "submit_button": "Senden", "clear_button": "Chat löschen", "examples": [ "Erklären Sie die Hauptunterschiede zwischen überwachtem und unüberwachtem Lernen.", "Wie kann die natürliche Sprachverarbeitung in der Kundenbetreuung eingesetzt werden?", "Erstellen Sie einen Projektplan für die Implementierung eines Chatbots im Kundenservice." ], "description": """ **D-LOGIC** ist ein fortschrittlicher KI-Assistent, entwickelt von Rafał Dembski, der die neuesten Fortschritte in der künstlichen Intelligenz nutzt, um Benutzer in verschiedenen Aufgaben zu unterstützen. Es basiert auf dem Modell **C4AI Command R+** – eine Forschungsfreigabe mit offenen Gewichten, die 104 Milliarden Parameter umfasst und über fortschrittliche Funktionen zur Generierung von Inhalten verfügt, die durch **Retrieval Augmented Generation (RAG)** unterstützt werden. Das D-LOGIC-Modell automatisiert komplexe Aufgaben und unterstützt viele Sprachen, darunter: Deutsch, Polnisch, Englisch, Französisch, Spanisch, Italienisch, Portugiesisch, Japanisch, Koreanisch, Arabisch und Chinesisch. Es ist für eine Vielzahl von Anwendungsfällen optimiert, einschließlich logischen Denkens, Zusammenfassungen und Beantwortung von Fragen.

**Modell**: [C4AI Command R+](https://huggingface.co/CohereForAI/c4ai-command-r-plus)
**Entwickelt von**: [Cohere](https://cohere.com/) und [Cohere for AI](https://cohere.com/research)
**Lizenz**: [CC-BY-NC](https://cohere.com/c4ai-cc-by-nc-license), in Übereinstimmung mit [C4AI's Richtlinie zur akzeptablen Nutzung](https://docs.cohere.com/docs/c4ai-acceptable-use-policy)

D-LOGIC ist ein unverzichtbares Werkzeug für die Inhaltserstellung, Projektmanagement und Kundenbetreuung auf höchstem Niveau und bietet intelligente, kontextbezogene und professionelle Antworten in vielen Sprachen. """ }, "en": { "input_placeholder": "Ask a question ...", "submit_button": "Submit", "clear_button": "Clear chat", "examples": [ "Describe in detail how the k-means clustering algorithm works.", "Propose an AI development plan for a manufacturing company.", "Provide a SWOT analysis for launching a new product." ], "description": """ **D-LOGIC** is an advanced AI assistant created by Rafał Dembski, leveraging the latest advancements in artificial intelligence to assist users in various tasks. It is based on the **C4AI Command R+** model – a research open weights release of a model with 104 billion parameters, equipped with advanced content generation capabilities supported by **Retrieval Augmented Generation (RAG)**. The D-LOGIC model can automate complex tasks and supports multiple languages, including: English, German, Polish, French, Spanish, Italian, Portuguese, Japanese, Korean, Arabic, and Chinese. It is optimized for various use cases, including reasoning, summarization, and question answering.

**Model**: [C4AI Command R+](https://huggingface.co/CohereForAI/c4ai-command-r-plus)
**Developed by**: [Cohere](https://cohere.com/) and [Cohere for AI](https://cohere.com/research)
**License**: [CC-BY-NC](https://cohere.com/c4ai-cc-by-nc-license), in accordance with [C4AI's Acceptable Use Policy](https://docs.cohere.com/docs/c4ai-acceptable-use-policy)

D-LOGIC is an indispensable tool in content creation, project management, and top-level customer support, offering intelligent, contextual, and professional responses in multiple languages. """ } } with gr.Blocks(analytics_enabled=False, theme=gr.themes.Monochrome()) as demo: language = gr.State("en") with gr.Row(): language_selector = gr.Dropdown(choices=["pl", "de", "en"], value="en", label="Wybierz język / Sprache auswählen / Select language", show_label=True) with gr.Row(): with gr.Column(scale=1): gr.Image("logoplus.png", elem_id="logo-img", show_label=False, show_share_button=False, show_download_button=False) with gr.Column(scale=3): description = gr.Markdown(translations["en"]["description"]) with gr.Column(): with gr.Row(): chatbot = gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, avatar_images=("bothavatar.png", "bothavatar.png")) with gr.Row(): user_message = gr.Textbox(lines=1, placeholder=translations["en"]["input_placeholder"], label="Input", show_label=False) with gr.Row(): submit_button = gr.Button(translations["en"]["submit_button"]) clear_button = gr.Button(translations["en"]["clear_button"]) history = gr.State([]) user_message.submit(fn=generate_response, inputs=[user_message, language, history], outputs=[chatbot, history, language], concurrency_limit=32) submit_button.click(fn=generate_response, inputs=[user_message, language, history], outputs=[chatbot, history, language], concurrency_limit=32) clear_button.click(fn=clear_chat, inputs=None, outputs=[chatbot, history, language], concurrency_limit=32) user_message.submit(lambda x: gr.update(value=""), None, [user_message], queue=False) submit_button.click(lambda x: gr.update(value=""), None, [user_message], queue=False) clear_button.click(lambda x: gr.update(value=""), None, [user_message], queue=False) with gr.Row(): examples = gr.Examples( examples=translations["en"]["examples"], inputs=[user_message], cache_examples=False, fn=trigger_example, outputs=[chatbot], examples_per_page=100 ) language_selector.change(fn=change_language, inputs=[language_selector], outputs=[user_message, submit_button, clear_button, examples, description]) if __name__ == "__main__": demo.queue(api_open=False, max_size=40).launch(show_api=False)