radames commited on
Commit
6974603
1 Parent(s): 6c141c6

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +57 -0
app.py ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import AutoFeatureExtractor, AutoModelForImageClassification, pipeline
2
+ import torch
3
+ from PIL import Image
4
+ import gradio as gr
5
+
6
+ device = "cuda:0" if torch.cuda.is_available() else "cpu"
7
+ dtype = torch.float16
8
+ nsfw_pipe = pipeline("image-classification",
9
+ model= AutoModelForImageClassification.from_pretrained("carbon225/vit-base-patch16-224-hentai"),
10
+ feature_extractor=AutoFeatureExtractor.from_pretrained("carbon225/vit-base-patch16-224-hentai"),
11
+ device=device,
12
+ torch_dtype=dtype)
13
+
14
+
15
+ style_pipe = pipeline("image-classification",
16
+ model= AutoModelForImageClassification.from_pretrained("cafeai/cafe_style"),
17
+ feature_extractor=AutoFeatureExtractor.from_pretrained("cafeai/cafe_style"),
18
+ device=device,
19
+ torch_dtype=dtype)
20
+
21
+ aesthetic_pipe = pipeline("image-classification",
22
+ model= AutoModelForImageClassification.from_pretrained("cafeai/cafe_aesthetic"),
23
+ feature_extractor=AutoFeatureExtractor.from_pretrained("cafeai/cafe_aesthetic"),
24
+ device=device,
25
+ torch_dtype=dtype)
26
+
27
+ def predict(image, files=None):
28
+ print(image, files)
29
+ images_paths = [image]
30
+ if not files == None:
31
+ images_paths = list(map(lambda x: x.name, files))
32
+ pil_images = [Image.open(image_path).convert("RGB") for image_path in images_paths]
33
+
34
+ style = style_pipe(pil_images)
35
+ aesthetic = aesthetic_pipe(pil_images)
36
+ nsfw = nsfw_pipe(pil_images)
37
+ results = [ a + b + c for (a,b,c) in zip(style, aesthetic, nsfw)]
38
+
39
+ label_data = [{ row["label"]:row["score"] for row in image } for image in results]
40
+
41
+ return label_data[0], label_data
42
+
43
+ with gr.Blocks() as blocks:
44
+ with gr.Row():
45
+ with gr.Column():
46
+ image = gr.Image(label="Image to test", type="filepath")
47
+ files = gr.File(label="Multipls Images", file_types=["image"], file_count="multiple")
48
+ with gr.Column():
49
+ label = gr.Label(label="style")
50
+ results = gr.JSON(label="Results")
51
+ # gallery = gr.Gallery().style(grid=[2], height="auto")
52
+ btn = gr.Button("Run")
53
+
54
+ btn.click(fn=predict, inputs=[image, files], outputs=[label, results], api_name="inference")
55
+
56
+ blocks.queue()
57
+ blocks.launch(debug=True,inline=True)